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Short Summary

This thesis uses mainly computational data-driven approaches and secondly experimental work to un-
derstand and answer questions of variation, taxonomy and functional characterization, interactions be-
tween members and underlying principles that govern microbial communities across ecosystems.

The importance to study microbes in the natural context of complex systems of communities was
highlighted in Chapter 1. The need to better understand the mechanisms that govern biodiversity was
discussed. Subsequently, it was proposed that research on microbial communities should play a central
role in the study of ecology and evolution. Finally, the transition of biology into the age of big data was
presented and the usage of data science accompanied by -omics approaches was emphasized as a way
to move forward. This was the route chosen in this thesis.

In Chapter 2 we studied the variation of the microbial community composition during sponta-
neous in vitro wine fermentation of riesling must. We made the following observations: (i) There
is a general influence of the vineyard on microbial composition with a striking differential abundance
of Metschnikowia. (ii) There is a decrease in biodiversity during alcoholic fermentation. Unexpectedly,
the fraction of Micrococcus increased in one vineyard during alcoholic fermentation. (iii) There is a
relation between stuck fermentations and the abundance of Starmerella.

In Chapter 3, we continued to explore microbial communities during wine fermentation. Specifi-
cally, the role of the adjunct Lactobacillus plantarum in the malolactic conversion of industrial wine
fermentation was investigated and this species was found to thrive better on white than on red wine fer-
mentations. We obtained experimental evidence to support the hypothesis that a successful introduction
of this species in a community was in the case of wine determined by the composition of the must, and
possibly by the presence of grape skins during fermentation.

In Chapter 5 a simple experimental coloring method is presented which distinguishes colonies of
the yeasts Lachancea thermotolerans and Saccharomyces cerevisiae on agar media. It does so by the
addition of bromocresol purple which induces Lachancea colonies to develop a brown color, whereas
Saccharomyces colonies remain white. The method can be applied in assessing the growth dynamics of
these yeasts in co-cultures.

In Chapter 3 we also studied a kefir community using genome sequences of isolated and sequenced
Bacteria representative strains. We found that Lactobacillus kefiranofaciens, a dominant organism in
kefir, stands out among the lactobacilli because it potentially has a high number of amino acid aux-
otrophies. Also, the only organism in kefir that had genes for flagellar assembly and chemotaxis was
Acetobacter. The presence of flagella in Acetobacter was experimentally confirmed.

In Chapter 4 we study pairwise interactions between microbes using measures based on genes
involved in metabolic processes. In the case of microbes from the urinary tract, a number of putative
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metabolic interactions were identified that could explain the experimentally obtained pairwise growth
effects. We found that members of Enterococcus may be complemented in their metabolism by the
other members of the community.

In Chapter 6 we investigated the metabolism of a novel Mycobacterium species, which was found
to be dominant in a microbial community residing in an acidic biofilm attached to the wall of a sulfur
cave in Romania. This Mycobacterium species expresses a full suite of enzymes involved in methan-
otrophic growth. Growth experiments using methane as the sole carbon- and free energy source verify
its methanotrophic niche. To our knowledge, this is the first report about a methanotrophic Mycobac-
terium of Actinobacteria.

In Chapter 7 a key question in microbial ecology is asked - how large biodiversity can be maintained
on a few resources. To address this question a highly diverse microbial community was investigated,
which grew for 15 years in an anoxic bioreactor on benzene as the main carbon and free energy source
and nitrate as an electron acceptor. We found evidence that many different niches are present and
while only a few community members seem to degrade benzene, the majority of species seems to
feed on metabolic left-overs, microbial necromass or even autotrophically using anaerobic ammonium
oxidation for free energy transduction and carbon fixation. An additional succession experiment verified
that the same few community members are the actual drivers of benzene degradation.

Finally, in Chapter 8 I gave a more detailed summary as well as discussion and outlook for future
research in microbial communities. I concluded with a philosophical note on the struggles of this
computational odyssey.
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Chapter 1

Introduction & Perspectives

1.1 From invisible to visible communities

Microbes were first observed at the end of the seventeenth century by Antoni van Leeuwenhoek, who
used microscopes created by himself [1]. This is considered as the start of Microbiology. It took more
than a hundred years for the further improvement of the microscope by Carl Zeiss [2] and almost a
hundred years more for the advancement of electron microscopy [3]. In parallel, methods for culturing
microorganisms on petri dishes were developed being still widely used across laboratories. Scientists
used these methods alongside with biochemical analyses to study the phenotype of microorganisms.
The establishment of these techniques led to important breakthroughs for the human society, such as
the discovery of penicillin [4]. Still, only a small fraction of microorganisms can be cultivated in the
laboratory, which imposes a significant limitation to study microbial diversity [5]. A big discovery
that would later allow the study of non-cultivated microorganisms was the the discovery of DNA by
Freidrich Miescher [6], followed by the description of its double helix structure by Watson, Crick and
Franklin [7, 8]. These discoveries, together with others, led to the rapid advancement of large-scale
sequencing techniques and with them, scientists were for the first time able to study genotypes - the
basic information of life. The study of microorganisms was no longer limited by culturing methods
under isolation and their properties and relatedness could now be assessed by deciphering a single
molecule - DNA.

Through computational algorithms we moved from the first phylogenetic tree sketched in Darwin’s
notebook to the modern tree of life which consists of 3.083 representative genera (Figure 1.1) [9], a
number that increases every day. The current phylogenetic tree separates life into three domains, with
two of those being prokaryotes, the Bacteria and Archaea, and the third one being the Eukarya [9]. The
latter group is considered to be the most complex life form, for example due to the complex membrane
system that forms cell compartments and allowed specialization by function [10]. Although recent
discoveries assigned at least three different types of organelles in Bacteria [11] indicating that they are
not as simple as we thought before, there is still an unexplained gap of complexity between the evolution
of eukaryotes from prokaryotes. This gap could initially be explained by the theory of endosymbiosis
which dates the origin of eukaryotes 1.5 billion years ago (Figure 1.1). Earlier before that, prokaryotes
existed around 3.5-4 billion years ago [12, 13, 14], they were present in dominating numbers and
formed the first biological communities [15]. Early life has been since its emergence arranged into
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Figure 1.1: A view of the tree of life
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The three domains of life are colored at green, blue and red represent Bacteria, Archaea and Eukarya,
respectively. The purple text indicates the relative placement of the genus or a lower taxonomic level
of the representatives in the tree. The numbers in parentheses below each taxon indicate the results
returned for each respective taxon in a google scholar search (accessed on 15/11/2020). Two major
events of evolution, namely endosymbiosis and multicellularity, are indicated in the tree. Note, the
Candidate Phyla Radiation group on the left side of Bacteria are composed entirely of organisms found
by metagenomics studies and therefore without isolated representatives. Similarly, many represen-
tatives lack isolates in the clades placed at the middle right side of Bacteria as well in the Archaea
domain. Based on [9].
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microbial communities where organisms interacted, adapted and evolved together to survive the harsh
environment of the Earth’s early atmosphere [16, 17, 18, 15, 19].

1.2 Biodiversity: complexity and resilience

Scientists believe that oxygenic photosynthesis evolved in such early microbial communities when a
group of Cyanobacteria evolved to harvest the energy from the sun to grow and, for the first time on
Earth, produce oxygen [16]. Stromatolites, rocky structures found by paleontologists across the globe,
are the remains of microbial mats that were once formed by these Cyanobacteria [15, 18]. The rise of
oxygen levels during the “Great Oxygenation Event” drastically changed the atmosphere and mineral
composition of Earth, as well as the diversity of the existing life forms [20, 21, 19]. Life before this
event was adapted to anoxic conditions. Oxygen was extremely toxic to the first anaerobic prokaryotes
who lacked molecular mechanisms to eliminate free radicals like superoxide and hydrogen peroxide
[22, 23, 19]. Sagan proposed that this drastic change of the environment acted as a driving force for
different organisms to unite, as a mechanism for survival, and resulted in more complex cells [24]. How
the first Bacteria ended up inside a host, an Archaea, by syntrophy or phagocytosis, is still an active field
of research [25, 19]. Regardless of the mechanism, this union indicates a prior highly interdependent
microbial community structure [25]. Photosynthesis imposed the emergency of a new niche occupied
by the recently formed eukaryotes. As a consequence, biodiversity increased significantly, although
eukaryotes are still representing a minority of the total number of cells on the planet; they represent the
biggest fraction of earth’s total biomass [26]. The next major event that has had a profound effect on
biodiversity was the evolution of multi-cellular life (organisms composed by multiple cells) Figure 1.1.

Figure 1.2: A graphical representation of the effect
of mass extinction events on biodiversity over time.
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A similar pattern using fossil data is reported in [27]

A possible origin of multicellularity was hy-
pothesised to be driven by predation as a selec-
tive force [28]. This was illustrated empirically
when the green alga, Chlorella vulgaris, which
maintains its unicellular form in laboratory cul-
tures for thousands of generations formed spher-
ical clusters after 10 to 20 generations as a de-
fense mechanism against a predator, Ochromonas
vallescia, a phagotrophic flagellated protist [28].
The evolution of multicellularity was a manifes-
tation of collaboration among community mem-
bers [29, 28]. The most complete record of bio-
diversity in time derives from fossil records of
the past 600 million years, when biodiversity in-
creased at a high rate and started in what is known
as the cambrian explosion [30]. The fossil record
also reveals many events of decrease followed by
increase of biodiversity. Such events are named
as mass extinctions and greatly correlated with

natural catastrophes (Figure 1.2) [27, 31]. There is evidence of such an event happening right now,
but in this case humans are the culprit [32, 33]. With the first immigration of the hominids to Eurasia
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from Africa, extinctions of the big sized mammals have followed [34]. The declining rate of global
biodiversity observed over the past 500 years is comparable to the previous mass extinction events [32].
Now more than ever exists a need to understand aspects of biodiversity, for example its tendency to
increase in time, especially after a catastrophic event. This line of research may help us, humans, undo
the damage that our industrial activities cause and further give insights to fundamental principles of life
[35, 36]. Unfortunately, the enormous time span needed for such evolutionary changes imposes a signif-
icant challenge to experimentally and quantitatively test hypotheses about driving forces of biodiversity
change as well as mechanisms of speciation and diversification. Because microbes have the capacity
to reproduce relatively fast and to be organized in complex communities, microbial communities are
appropriate model systems to study the underlying mechanisms of biodiversity and evolution.

Remarkably, microbes in terms of generation time, carbon- and energy sources, habitat and many
other properties, are viewed as extreme and display a much larger diversity than the visible domain of
Life. One example is Escherichia coli (E. coli), a fast growing bacteria that usually lives in the intestine
of animals and that can reach generation times up to 20 minutes and still survive up to 260 days in
autoclaved filtered river water [37]. While Mycobacterium tuberculosis, a pathogenic bacterium that
causes tuberculosis in humans, can at the best reproduce every 12 hours and is able to survive from
decades up to hundreds of years in a dormant state when the conditions are not favorable [38, 39, 40].
Microbes can be found in almost all areas of the planet regardless of the conditions they encounter. Their
ability to adapt results in an increase of tolerance towards almost every set of conditions available on
Earth, including adaptation to chemical and physical factors like extreme pH, temperature and radiation
[41, 42]. Even with limited resources, microbes and their communities seem to be able to maintain high
abundance and diversity. An example is the bacterioplankton communities, particularly two dominant
members, namely Pelagibacter spp. (heterotrophic) and Prochlorococcus spp. (photosynthetic), which
are considered to be among the most abundant organisms on Earth [43, 44, 45, 46]. Despite this, they are
by far less studied when compared with many model organisms such as E. coli (Figure 1.1). Also, recent
studies on Deep Subseafloor Sediments, which constitute a major part of Earth’s biosphere, showed an
astounding diversity of which we were totally ignorant. More importantly, such life forms can keep
living at an extremely slow pace on a time scale of thousand of years. Such slow growth rates seem
to be the norm in many cases, which leads to the question whether or not the fast growing organisms
we studied for decades in the laboratories are extreme cases [47, 48, 49]. The ability of microbes to
adapt and persist is also obvious in healthcare. While the discovery of antibiotics led to the treatment
of various serious diseases, their extensive usage resulted in the widespread occurrence of microbial
drug resistant populations [50]. Furthermore, known pathogens, namely Pseudomonas aeruginosa [51]
and Staphylococcus aureus [52], displayed a 100-fold increase rate of mutation towards resistance
to antibiotics when studied in biofilms compared to planktonic cultures. In a closer look, isogeneic
sub-populations with different phenotypes were identified. Certain types of these sub-populations,
named persisters, are thought to be dormant metabolically non-dividing cells, and recent evidences
suggest adaptive evolution as a mechanism behind their emergence, such as the triggering to become
active by intracellular stress response [50]. The viewpoint that persister cells and biofilm formation are
manifestations of collective behavior between microbes rapidly gaining popularity among the scientific
community[53]. All together we can ask which organisms are better representative model systems to
study such mechanisms than microbial communities?
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1.3 Microbial communities to study ecology and evolution

When Darwin conceived the theory of natural selection and wrote his book “The Origin of Species”,
the existence of microbes had little or no role in it. Darwin’s main theory of natural selection is based
on three steps that drive evolution: i) members of a population have different traits, ii) specific traits
are selected in a specific environment over time and iii) selected traits will prevail in the population as
they provide a fitness advantage to the offspring [54, 55]. This chain of events is still widely accepted
today, however, alternative and complementary theories of evolutionary change were later proposed,
such as genetic drift and punctuated equilibrium. The first introduces the important role of randomness
in the process of selection and challenges the deterministic view of natural selection [56, 57]. The latter
proposes yet again an alternative on how evolution progresses, by long periods of stasis followed by
intervals of rapid change, which challenges the gradual view of natural selection [58]. Those contra-
dictory theories, including natural selection, are well supported by models and empirical data, which
indicates that evolution is very far from fully understood. The majority of the supporting evidence is de-
rived from biological sciences and paleontology of higher eukaryotic organisms but not much has been
done using microbes and microbial communities, which arguably provides a preferable model system
for controlled evolutionary experiments. To have a more complete picture of how evolution acts, an
endeavour should be made to include microbes and microbial communities as part of evolutionary stud-
ies. A classic problem that often generates confusion among academics is how to describe and calculate
microbial fitness. The concept of growth rate is widely accepted as a good proxy for fitness, but even
in the simplest scenario of an individual organism in a batch culture, not only growth but also the lag
and stationary phase are relevant for fitness. Evidently, although growth rate is an essential component
of fitness, it is not the only one. For example, the adaptation to environmental fluctuations and survival
during starvation or stress conditions of an organism are also essential features contributing to fitness.
Many times, scientists define optimal fitness as the maximum growth rate of a population, however
this simplification ignores the importance of relative fitness [59, 60]. This issue becomes evident if we
try to assign fitness to each individual member of the community to study a particular ecosystem. In
this case, an increase of growth rate by each community member is not as informative about the evolu-
tionary fate of the community as the increase of growth rate relative to the other community members.
To solve some of the previous issues mentioned, competition assays were performed by Lenski using
Escherichia coli, which still run after more than 30 years since the start [60]. Lenski showed that, when
given enough time, in an isogenic population in the same environment, distinct subpopulations will
evolve into an ecosystem with different types of metabolism. Moreover, in a similar experiment Rosen-
zweig and Adams showed the evolved sub-populations are complementing each other by cross-feeding
mechanisms which give a strong indication of cooperative behavior among microbes [61].

Cooperation was observed in life forms other than humans long before it was discovered in mi-
crobes, especially in close relative species to us like primates [62, 63]. Species can exhibit such be-
havior to an extreme degree, for example social insects (bees, ants, etc.), where members of a com-
munity may sacrifice themselves or set aside their own reproduction for the benefit of the group.
This extreme case of cooperation is known by eusociality [64, 65]. In the effort to explain such a
phenomenon one of the biggest debates in the recent history of biological science is still ongoing.
How does altruism evolve if evolution is driven by competition between individuals? One possi-
ble explanation, which is still in accordance with the conventional belief that natural selection pri-
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marily acts on individuals, is found in the concept of inclusive fitness, proposed by Hamilton [66].

Figure 1.3: A simplified graphical representation of
selection mechanisms in evolution
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a) Individual selection favors non-cooperative indi-
viduals, b) group selection favors cooperative indi-
viduals within groups and c) the outcome of mul-
tilevel selection depends on the interplay between
both previously mentioned selection mechanisms.
Note, in this scheme the total population of individ-
uals doubles over time, alternatively in the presence
of turn-over in the population (birth and death) it
could remain the same or diminish. The figure is
modified from [67].

Another explanation is that evolution may act at
the group level. This idea was already dropped
in the 1930s when Fisher and Haldane embraced
the gene-centered view of evolution and proposed
the concept of kin selection to explain altruism
[68, 69]. Later on, in the early 1960’s the con-
cept of group selection was revived and continue
with the work, for example, of Wynne-Edwards
[70], but it was always opposed by the main-
stream idea that natural selection primarily acts
at the level of the individual [71, 66]. Further de-
velopment of the group selection led to the mul-
tilevel selection theory by David Sloan Wilson
who wrote the iconic phrase “Selfishness beats
altruism within groups. Altruistic groups beat
selfish groups. Everything else is commentary.”
(Figure 1.3) [72, 73]. In the microbial world, co-
operation was identified much later. A manifesta-
tion of cooperation can, for example, be found in
yogurt, where there is a mutually beneficial inter-
action between two species of Lactic Acid Bacte-
ria during fermentation [74], or in pathogens such
as Pseudomonas or Xanthomonas which commu-
nicate by means of signalling molecules (quo-
rum sensing) to regulate biofilm formation, motil-
ity and eventually the coordinated attack of the
host [75]. Recently, by the quantification of gene
expression dynamics during the ontogeny of a
Bacillus subtilis biofilm, its resemblance with the
development of multicellular organisms was re-
ported, this led the authors to challenge the con-
ventional idea that the early life forms was uni-
cellular and free-living organisms [76]. To reca-
pitulate, the ability of microbes to communicate
and therefore co-regulate a wide range of their
phenotype collectively may be the key to under-
stand the origin of multicellularity and therefore
cooperation. Here yet again to move forward, mi-
crobial community research is needed to conduct
controlled experiments which will provide empir-
ical data. To do so, a gap between biology and
microbiology needs to be bridged. A good start-
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ing point is to re-evaluate the definition of Species. Originally separation of species was based on visual
phenotypic traits and sexual reproduction, but microbes often look the same under the microscope and
more importantly they reproduce asexually. Moreover, they exchange genetic material horizontally even
between phylogenetically distant relatives [77, 78]. Such fundamental differences may play a signifi-
cant role in the observed intraspecies and interspecies variation across the domain of Life, as such, those
differences must be taken into account [79, 80, 81]. These are some issues for serious consideration
when we use microbial community research to further develop the theories of evolution.

The same consideration of bridging the gap between Biology and Microbiology apply to ecolog-
ical theories. In addition, recent advancements in metagenomic sequencing and microbiome research
revealed that many complex communities of microbes live externally and internally on host species.
Such findings of strong inter-dependencies emerged by the interactions between host and microbes
questions the boundaries of the old species definition and supports the view that a single human could
be perceived as an ecosystem. To understand the patterns of species co-existence and biodiversity Ecol-
ogists used the notion of a niche, which takes for granted that species are different. The competitive
exclusion principle is built on this basis and proposes that the number of species can be at most equal
to the number of the limited resources in a specific environment. In many cases, this is not what we
observe in nature. For example marine biology already from the 60s pointed out the plankton para-
dox which concerns the fact that the diversity of plankton species is remarkably rich despite limited
resources [82, 83]. Mechanisms such as niche partitioning, in which competing species are thought to
be driven by evolution to differentiate their niches, could explain a large biodiversity [84]. These main-
stream ideas and theories were recently challenged by the neutral theory for ecology, which proposes
a null model with "functionally equivalent" species and in which biodiversity can be explained by ran-
dom events of birth, death and dispersion [85, 86]. In other words, in such a model niche differentiation
does not affect the biodiversity of a community. To avoid another big dichotomy in the future, once
again research using microbial communities could play a key role by connecting these theories with
controlled experiments and employing the newly advancing sequencing revolution techniques.

1.4 Laws, principles and assembly rules

There is an increasing interest to investigate whether microbial community assemblage and distribution
of their members can be understood and predicted quantitatively. This pursuit is accompanied by the
search for ecological mechanisms that govern biodiversity. Strategies that looked for common quanti-
tative principles in microbial communities are discussed below. One approach to understand complex
systems can be described by the reduction of their complexity through the study of the individual parts
of the system. An example is the separate study of biotic and abiotic factors of an ecosystem. When
the focus is on biotic factors, thereby on the effect of interactions between the members of a microbial
community under controlled and constant environments, the complexity is significantly decreased. But
still, natural communities consist of hundreds to thousands of species. Therefore, a further reduction
was attempted by performing pairwise interactions studies, which combined with computational ap-
proaches have proven to be effective to describe the degree of competition and cooperation between
community members. Based mainly on growth measurements in which species were cultured pairwise,
many studies found competition to be the dominant type of interactions between the species [87, 88, 89].
However, when only pairwise interactions are studied, higher-order interactions happening in the whole
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community are ignored. Higher-order interactions were shown to play a stabilizing role in communities
with high species diversity [90]. The usage of stoichiometric constraint-based modelling, parallel to
biochemical analysis, allows quantitative predictions of microbial interactions. However, these mod-
els are still limited to small-sized communities growing under well-defined conditions [91, 92, 93].
Recently it was shown that by deducing simple rules of co-existence and exclusion in pairwise compe-
titions, predictions of the composition of competitions between triples of species are feasible [94]. All
the bottom-up approaches mentioned are of great importance to investigate the assembly rules of micro-
bial communities, but top-down methods are of equal value and should complement one another (Fig-
ure 1.4). In one example which combines both, researchers asked if a complex microbial community
could be formed in a batch culture provided with a single carbon source inoculated with a natural com-
munity. The authors tested twelve different communities derived from soil and plant samples on seven
different carbon sources, and concluded that the answer was yes. The resulting stable community com-
positions were highly reproducible at the taxonomic level of the family, but more diverse at the species
level. In the same study, researchers identified cross-feeding as an essential mechanism that explains the
final composition of a microbial community [95]. To draw this conclusion, they combined experimen-
tal, metabolic modeling and sequencing techniques. Such multidisciplinary approaches are important
for research in the field of microbial communities. The recent advancements of high-throughput next
generation sequencing techniques, in this case by using 16S ribosomal RNA amplicon sequencing, was
a crucial part to obtain qualitative representation of the community’s composition. With the usage of
such accurate representations and by studying the species abundance distribution of different microbial
communities Grilli showed that the variation of abundance and diversity can be explained with three
laws of macroecology [96]. It is clear that the study of complex systems such as microbial communities
is a challenge, but by employing different scientific methodologies researchers have started to disentan-
gle the fundamental properties that govern them. In the long lived debate between randomness against
determinism, in microbial ecology the latter seems to win space.

1.5 (Meta)genomics - the age of big data

Microbiology has to become more quantitative in order to help us understand the relationships within
and between microbial communities as well as in relation to the environment. The establishment of
laws and principles that govern the biological systems has started, but the road ahead is unclear and
long. Successful approaches in this direction proved to be the ability to recognize patterns in biological
data. To be able to do so reliably, data need to be of high quality and quantity. The pattern recogni-
tion field, or data science, is undergoing groundbreaking advancements. Consequently, data acquisition
with appropriate experimental design, as well as the downstream analysis becomes limiting. Especially
a vigorous design of conclusive experiments is still lacking in the field where it is a common practice to
apply statistics afterwards. On the other hand, the limitations of representative data acquisition become
even more evident due to biases introduced during sample’s manipulation (cultivation, observation and
quantification of the microbial life in the laboratory). Additionally, the cost and time spend in down-
stream analysis is predicted to be the future bottleneck. On the bright side we see an increasing desire
to generate quantitative biological data, as illustrated, for example, by the rapid progress of fast and
cheap DNA-sequencing technologies. In fact, nowadays sequencing a whole Human genome may cost
less than US$1,000 and take few days of work, while the first Human genome took 13 years of work by
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Figure 1.4: A simplified scheme for microbial community research

Omics 
experiments

Microbial 
Physiology 

Statistical 
models

Omics 
analyses

Reductionism 
Pairwise studies

         Holism 
Whole communities

B
o
tt

o
m

-u
p To

p
-d

o
w

n

This scheme emphasizes the approaches and methods used in the current thesis. It is highlighting the
importance of interplay/interdependence of Dry-lab and Wet-lab methods.

hundreds of researchers from different institutes, costing US$3 billion in total [97, 98].
Microbial ecology research was dramatically affected by this advancement. Next generation se-

quencing techniques led to approaches such as metabarcoding of 16S or 18S ribosomal RNA amplicon
sequencing, which provide a quantitative view on taxonomy and abundance distribution of communi-
ties for Bacteria and Eukarya, respectively [99]. These methods were eagerly adopted by microbial
ecologists to study ecosystems, which consequently led to the development of many experimental and
computational procedures [100]. Still, some important issues remain to be solved, for example the elim-
ination of biases introduced by experimental processes such as DNA extraction or PCR amplification,
and computational issues, such as the definition of representative units for each member of the commu-
nity, for example, by the the usage of Operational Taxonomic Units (OTUs) or Exact Sequence Variants
(ESVs) [101, 102, 99]. Currently, the low cost and the rich toolkit of metabarcoding techniques mark
them as ideal approaches for initial screening to access the dynamics of microbial communities.

A step further is taken by metagenomic shotgun sequencing, which allows the untargeted investi-
gation of the whole DNA content of an environmental sample, and thereby the investigation of genes,
functions, and even non-coding sequences. Furthermore, de novo reconstruction of draft genomes is
feasible, enabling the study of genomes derived from a community in a short time frame without the
need of organisms isolation. Most importantly, these techniques allow scientists to study unculturable
species and communities from diverse environments (Figure 1.1). Finally, metagenomics allows the
study of the community members based on their metabolism by linking gene content to relevant bio-
chemical reactions and pathways. To achieve such a mapping is not trivial process and it’s an active
field of bioinformatics research in which various computational tools and databases are being devel-
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oped. The benefits of metagenomics comes alongside with significant computational and statistical
challenges derived from the analysis of the big data. Some of these issues concern the normalization
and the high dimensional nature of the data [103].

The problem expands further when integration of additional layers of biological information such as
metatranscriptomics, metabolomics and metaproteomics are added, in what is nowadays called multi-
omics. The promise of these methods to provide a holistic view to answer many biological questions
boosted their popularity as well as the interest in their further development [104, 105, 106]. Here yet
again, data science and machine learning techniques are and will become even more essential to disen-
tangle the data complexity and identify relevant biological patterns which will lead to new hypotheses.
Even though the benefits of data-driven research in microbiology are tremendous, still many scientists
are reluctant to embrace this route. To facilitate this transition, integration of automation and robotics
inside the laboratories is the key [107], thereby replacing manual labor will allow scientists to invest
more time in method development, experimental design, data analysis and generation of new hypothe-
ses. More importantly, by transferring the manual labor to robots we generate more data of better
quality which will facilitate the transition of Biology into the age of big data.

1.6 Outline of the thesis

This thesis uses mainly computational data-driven approaches and secondly experimental work to un-
derstand and answer questions of variation, taxonomy and functional characterization, interactions be-
tween members and underlying principles that govern microbial communities. In the following chap-
ters, the properties of microbes will become manifest in different ecosystems, like fermented beverages
(wine and kefir), the human urinary tract microbiome, an extremely acidic biofilm from a cave, and in
a benzene degrading community. As a result, many questions were answered and many new ones were
generated.

In Chapter 2 we address the question how microbial community composition varies during spon-
taneous in vitro wine fermentation of riesling must. Metabarcoding was used to determine taxonomy
and abundance distribution of the Eukaryotic population. Additionally, metagenomics was employed
to functionally characterize the Bacteria and Eukaryotes present in selected samples. We investigated
three putative covariates of microbial composition, namely: (i) the vineyard from which the grapes were
originated; (ii) the time after the onset of alcoholic fermentation; and (iii) whether alcoholic fermenta-
tion was successfully completed or whether the fermentation became ‘stuck’ in the process.

A computational framework was devised in Chapter 3 with the aim of characterizing functional
differences between species in a microbial community based on their gene content including genes
involved in metabolic, signaling and structural processes. The method was applied to study microbial
communities of kefir and wine fermentation based on isolated and sequenced strains and metagenomes,
respectively.

In Chapter 4 the computational framework was further expanded to study pairwise interactions
inferred by growth experiments using measures based on genes involved in metabolic processes. The
method was applied to study mainly isolated sequenced genomes which represent a microbial commu-
nity found in urinary tract infections. Furthermore, the same approach was used to test if the measures
based on genes involved in metabolic processes correlates with the abundance of co-occurrence data
retrieved from the gut microbiome.
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In Chapter 5 a simple experimental coloring method is presented which distinguishes colonies of
the yeasts Lachancea thermotolerans and Saccharomyces cerevisiae on agar media. The method aims
to quantitatively assess the growth dynamics of the yeast pair. As such, it is a tool to further explore the
unique property of L. thermotolerans among yeasts to convert the consumed sugars partly to lactic acid
instead of ethanol.

The metabolism of a novel Mycobacterium species is investigated and presented in Chapter 6. The
organism dominates a microbial community residing in an acidic biofilm attached to the wall of a sulfur
cave in Romania. Using metagenomics the metagenome-assembled genome was reconstructed and its
metabolic potential was explored. Also, two more Mycobacterium species derived from the same cave,
as well as their phylogenetic relationship with other members of the Mycobacterium genus were inves-
tigated. The addition of experimentally determined protein profiles facilitated a better understanding of
the novel Mycobacterium species niche in this extreme ecosystem.

In Chapter 7 a key question in microbial ecology is addressed - how a large biodiversity can be
maintained on a few resources. To address this question a highly diverse microbial community was
investigated, which grew for 15 years in an anoxic bioreactor on benzene as the main carbon and free
energy source and nitrate. To assess the effect of selection in the diversity of the community after this
period of time, we took a metagenomic and metatranscriptomic snapshot. Its metabolism as well as the
dynamics of the community composition were investigated by studying batch cultures inoculated from
the community in a succession experiment using metabolomics and metabarcoding.

Table 1.1 gives an overview of all the methods used across this thesis.
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Table 1.1: Overview of the methods used in this thesis.

Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7
Dry-lab methods X X X X X
Metagenomics X X X X
Metabarcoding O O X
Metatranscriptomics X
Proteomics O
Metabolomics O X
Genomics X X
Wet-lab methods O X X O O
Metagenomics O O O O
Metabarcoding O O O
Metatranscriptomics O
Proteomics O
Metabolomics O O
Genomics O
Flow cytometry O
Growth experiments X X O
Electron microscopy O

Dry-lab methods refers mainly on work that performed on computer, while Wet-lab methods refers
mainly on work that performed on experimental laboratory. X indicates work performed directly by
me, while O indicates work performed by co-authors and collaborators.
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Chapter 2

Taxonomic and Functional
Characterization of the Microbial
Community During Spontaneous in vitro
Fermentation of Riesling Must1

2.1 Abstract

Although there is an extensive tradition of research into the microbes that underlie the winemaking
process, much remains to be learnt. We combined the high-throughput sequencing (HTS) tools of
metabarcoding and metagenomics, to characterize how microbial communities of Riesling musts sam-
pled at four different vineyards, and their subsequent spontaneously fermented derivatives, vary. We
specifically explored community variation relating to three points: (i) how microbial communities vary
by vineyard; (ii) how community biodiversity changes during alcoholic fermentation; and (iii) how mi-
crobial community varies between musts that successfully complete alcoholic fermentation and those
that become ‘stuck’ in the process. Our metabarcoding data showed a general influence of microbial
composition at the vineyard level. Two of the vineyards (4 and 5) had strikingly a change in the dif-
ferential abundance of Metschnikowia. We therefore additionally performed shotgun metagenomic
sequencing on a subset of the samples to provide preliminary insights into the potential relevance
of this observation, and used the data to both investigate functional potential and reconstruct draft
genomes (bins). At these two vineyards, we also observed an increase in non-Saccharomycetaceae fun-
gal functions, and a decrease in bacterial functions during the early fermentation stage. The binning
results yielded 11 coherent bins, with both vineyards sharing the yeast bins Hanseniaspora and Sac-
charomyces. Read recruitment and functional analysis of this data revealed that during fermentation,
a high abundance of Metschnikowia might serve as a biocontrol agent against bacteria, via a putative
iron depletion pathway, and this in turn could help Saccharomyces dominate the fermentation. Dur-

1Published in collaboration with Kimmo Sirén, Sarah Siu Tze Mak, Christian Carøe, Jan Hendrik Swiegers, Douwe
Molenaar, Ulrich Fischer and M. Thomas P. Gilbert in Frontiers in Microbiology;10;697, (2019), 10.3389/fmicb.2019.00697
[108]
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ing alcoholic fermentation, we observed a general decrease in biodiversity in both the metabarcoding
and metagenomic data. Unexpected Micrococcus behavior was observed in vineyard 4 according to
metagenomic analyses based on reference-based read mapping. Analysis of open reading frames using
these data showed an increase of functions assigned to class Actinobacteria in the end of fermentation.
Therefore, we hypothesize that bacteria might sit-and-wait until Saccharomyces activity slows down.
Complementary approaches to annotation instead of relying a single database provide more coherent
information true species. Lastly, our metabarcoding data enabled us to identify a relationship between
stuck fermentations and Starmerella abundance. Given that robust chemical analysis indicated that al-
though the stuck samples contained residual glucose, all fructose had been consumed, we hypothesize
that this was because fructophilic Starmerella, rather than Saccharomyces, dominated these fermenta-
tions. Overall, our results showcase the different ways in which metagenomic analyses can improve our
understanding of the wine alcoholic fermentation process.
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2.2 Introduction

Microbial interactions are vital to the winemaking process, with numerous different microbes known to
be involved in the formation of wine flavor and aroma. Understanding this microbial diversity and their
interactions throughout the process stands to enhance our knowledge of winemaking and wine complex-
ity [109]. Although research on wine microbes has a long history [110]), many significant challenges
remain to be solved, not least due to difficulties in studying the composition of wine’s complex matrix.
In this regard, there is considerable interest in the application of high-throughput sequencing (HTS)
tools such as metabarcoding and shotgun metagenomic sequencing to wine research, given their poten-
tial to offer us more in-depth characterization of the microbial community [111, 112, 113].

Questions that have received considerable attention include the origin of yeasts that drive the fer-
mentation, and how different microbes shape the fermentation [114, 115, 116, 117, 118]. However,
the answers to these questions are not clear cut. For example, it remains debated as to whether suffi-
cient Saccharomyces cerevisiae is present in the vineyard (thus entering the must during pressing) to
drive fermentation [119]. This question is particularly timely today, given the trend to return to spon-
taneous fermentation during winemaking, for reasons relating to both typicality as well as arguments
that spontaneously fermented wines gain in complexity due to the more diverse microbial interactions
[120]. Furthermore, the relative importance of the vineyard versus winery flora during fermentation
remains inconclusive, and little is known about how the two interact with each other. While some
authors have suggested that the main contributors to fermentation originate from the vineyard flora
[121, 122, 123, 124], others argue that the winery flora dominates [125, 126].

A further topic of interest is the dynamics of the microbial community during the alcoholic fermen-
tation. While alcoholic fermentation is known to result from a succession of various microbes, with
Saccharomyces eventually dominating, details about the timing and abundances of different microbes
remain of interest [125]. It is currently understood that while microbial diversity decreases during the
winemaking process [118], some microbes can survive [127, 128], such as the yeast Metschnikowia
pulcherrima [129] and some bacteria such as Lactobacillus, Lactobacillaceae, and Gluconobacter
[130, 122]. Although traditionally how the different microbial species interact has been studied us-
ing culture-based techniques, they are increasingly targeted using culture-independent methods [131,
132, 133, 134, 135].

Another area of growing interest relates to the role of spontaneous fermentation. Because this is
driven principally by non-Saccharomyces yeasts, spontaneous fermentations are regarded as being able
to diversify aromatic quality [136, 137]. However, their use remains intimidating for the industry, as
they can lead to unwanted characteristics [138], and sluggish, or even stuck, fermentations [139, 140].
While the main reason for sluggish fermentation is often nutrient related, additional microbial interac-
tions could play a role, for example, by reducing nutrient availability. Recently, metabarcoding data
have been used to suggest that high species richness (including the presence of non-Saccharomyces
yeasts) in must samples can negatively affect the capability of Saccharomyces to carry out the fermen-
tation [141]. If so, the addition of sulfur (SO2) to the harvested grapes or must might be a means
to allow desired winery microbes to dominate, by removing competition originating from unwanted
vineyard microbes.

Although there is an increasing trend to apply HTS tools to study wine microbiology, with few ex-
ceptions these have been amplicon-based “metabarcoding” approaches that enable community profiling
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(e.g., as varied by geography, regions, Botrytis) as reviewed extensively by Belda et al. [111] and Ste-
fanini and Cavalieri [112]. Thus, there is considerable interest in profiling the whole genomic content
using true metagenomic approaches, in the hope that they will also provide information about the func-
tional pathways involved [113]. In this regard, there are currently only two shotgun sequencing-based
metagenomic studies of wine fermentation published [133, 135]. The first investigated the bias between
metagenomics and metabarcoding in assessing community structures, while the second characterized
the impact of the inoculations of Oenococcus oeni and Brettanomyces bruxellensis on volatile phenol
formation.

Given the potential of HTS for investigating microbial community and interactions, and metage-
nomics in providing insights into genomes and genes together with their functional potential [113], in
this study, we combined metabarcoding and metagenomic sequencing in order to investigate two prin-
cipal questions relating to spontaneously fermented (i.e., not deliberately inoculated) must. First, we
explored how the fermentation microbial community differs as a result of vineyard, and secondly, how
the microbial diversity changes during the fermentation process itself. Specifically, we chose to spon-
taneously ferment must samples originating from four Riesling vineyards in Pfalz (Germany). While
most of the samples completed alcoholic fermentation, several exhibited sluggish fermentation. Thus,
this also provided us with the opportunity to also explore the microbial basis of this phenomenon.

2.3 Results

Eight different Riesling musts, containing four vineyard specific microbial compositions, were allowed
to ferment spontaneously. While most of the samples underwent alcoholic fermentation following
the expected timeline (Table A.1 and Table A.2), three exhibited sluggish (henceforth referred to as
“stuck”) fermentation behavior. Specifically, these needed 6 months (data not shown) to finish the
fermentation, as opposed to the 5 weeks time needed by the others (Figure 2.1 A). Furthermore, no
malolactic fermentation was observed (Table A.1 and Table A.2).

Metabarcoding was performed by amplifying the ITS2 gene for the 32 extracts (four sampling dates
for the eight samples). Prior to subsequent analysis, one extract (sample w4b112 representing the stuck
fermentation behavior group) was removed due to yielding fewer than 1000 reads. In total, 2.79 million
reads were generated yielding 105 OTUs, although after all filtering this was reduced to 2.75 millions
reads representing 72 OTUs that were retained for subsequent analyses.

A total of 1.6 billion raw reads was generated from the 10 shotgun metagenomic sequenced samples,
of which 1.5 billion were retained after adapter removal. Details of the number of reads per sample and
the percentage that mapped to the curated database are shown in Table A.5 and Table A.6.

2.3.1 Overall Community Differences

Overall, while the metabarcoding results clearly show that Saccharomyces drives the alcoholic fermen-
tation (given their abundance among the data), we observed three main drivers of sample clustering
that relate to the microbial composition. First, there were differences in fermentation behaviors; sec-
ond, there were differences between the four vineyards; and third there were clear differences relating
to the stage of fermentation as expressed as alcohol percentage (Figure 2.2). Given these results, we
therefore explored three principal questions. First, we used our metabarcoding and metagenomic data
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Figure 2.1: Fermentation performance of the samples.

Triangles represent stuck behavior samples and circles represent normal behavior samples. (A) Most
samples showed normal alcoholic fermentation, three samples stood out with a slower fermentation
speed, and showed a preference for fructose instead of glucose. Color scale represents fructose (g/L).
(B) A zoom in of stuck behavior samples between fermentation days 13–26. Starmerella was found
to be the highest in relative abundance in these samples in ITS2 metabarcoding data. Color scale
represents the proportion of Starmerella. (C) The glycerol concentration was higher in these stuck
behavior samples when less than 20 g/L of fructose remained. The gray dots represent the actual
measured values.
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to explore how the microbial communities vary between vineyards. Second, we investigated how dif-
ferent stages within alcoholic fermentation impact the microbial biodiversity. This was done using both
the metabarcoding data from all the samples, as well as the metagenomic data generated from a subset
of samples chosen so as to give more detailed preliminary insights into the longitudinal effect at two
of the vineyards. Third, we used the metabarcoding data to investigate how the microbial community
profile differs between the normal and stuck fermentations.

2.3.2 Differences Between Vineyards

The differences between the four vineyards were initially investigated by metabarcoding all samples
for the ITS2 region (Figure 2.2). Pairwise comparisons of the vineyards indicated that the microbial
community of vineyard 2 diverged most from the three other vineyards, with the differential abun-
dances of four fungal OTUs clearly standing out (Figure 2.2 D). First, Botrytis (3: p-adj = 3.51e-7, 4:
p-adj = 1.68e-3, 5: p-adj = 1.76e-5) and Saccharomyces (3: p-adj = 4.00e-8, 4: p-adj = 1.78e-4, 5:
p-adj = 5.81e-5) were found to be significantly lower in vineyard 2. Besides the lower abundance of
Saccharomyces, the vineyard 2 was also showcased a slower fermentation rate (Table A.1, Table A.1).
Second, Starmerella was found at higher abundance in vineyard 2 than vineyard 5 (p-adj = 4.21e-06).
Lastly, Metschnikowia was found to be significantly less abundant in vineyard 2 than vineyard 5 (p-adj
= 1.39e-09) and vineyard 3 (p-adj = 7.56e-05). Thus, vineyard 2 was found to be the most different as
it differentiated from the others with 3 known fermenting yeast genera and the grape bunch rot (Fig-
ure 2.2 D). The only significant difference was found when comparing the other vineyards was between
vineyards 4 and 5, where one OTU, Metschnikowia (p-adj = 3.50e-4), was found at significantly higher
concentrations in vineyard 5 (Figure 2.2 D). Since the differences among vineyards 3, 4, and 5 were
minimal in metabarcoding, in order to investigate further, we chose a subset of samples from these three
vineyards for a further metagenomic analysis. We were able to further explore this specific difference of
Metschnikowia between vineyard 4 and vineyard 5 using the metagenomic data derived from samples
from vineyards 4 (W3 and W4) and 5 (W9 and W10) that were taken at similar fermentation stages as
estimated by alcohol percentage (Figure 2.3 and Table A.3). Annotating reads to the curated taxonomy
database showed that samples with lower alcohol percentage had a lower percentage of mapped reads
(W3: 15.33% and W9: 34.98%) compared to those with higher alcohol percentage (W4: 77.69% and
W10: 50.54%) (Table A.5). This suggested that the curated database was performing better in annotat-
ing higher alcohol percentage samples, thus, failing to catch species in the start of the fermentation. We
reasoned that a gradual database curation alone would not cure the low annotation problem. Therefore,
we resorted to functional annotation and binning-based approaches, which complement the raw reads
recruitment approach as they do not rely on the same database.

Next, a functional comparison of the microbes at these two vineyards was performed using the
COG classification derived from eggNOG annotation. The count number of bacterial functions was
significantly higher in vineyard 4, whereas the vineyard 5 had a small increase of Saccharomycetaceae
functional count and a significant increase of the “other fungus” functional count (Figure A.1). In
order to further explore this non-Saccharomycetaceae group, and to validate if this corresponded to the
presence of Metschnikowia species (as observed with metabarcoding), binning was applied with the
aim of reconstruction of draft genomes.

Figure 2.3 shows an overview of the binning results, and the comparison of the differences be-
tween vineyards 4 and 5 corresponding with regards to alcohol levels. From vineyard 4, five genomic
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Figure 2.2: Microbial diversity and predominant genera explain the sample differences using ITS2
metabarcoding.

(A) Clustered heatmap depicting the 20 most abundant species. Clustering is mainly driven by fermen-
tation performance. Color scale represents species relative abundances transformed to Poisson dissim-
ilarities. (B) Differential abundance of OTUs in log2 fold change by the fermentation performance:
normal fermentation (pink) and stuck fermentation (purple). Four OTUs are found to be significantly
more abundantly expressed in normal fermentations, whereas two OTUs are found significantly more
abundantly expressed in stuck fermentations. (C) The relationship of alcohol percentage and α-diversity
was measured as a first principal component of decomposed Hill numbers with q-values between 0 and
3, for all samples is found to decrease and vary more with rising alcohol percentage. The size of dots
increases with the increase in Hill’s number variance. The gray scale corresponds to alcohol percent-
age. (D) Vineyards were studied with pairwise comparisons of differentially expressed abundances
across all time points. Line between vineyards indicates a significant difference between the pairwise
comparison.
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Figure 2.3: Genome bins visualization with mean coverage.

The visualization of mean coverage of genome bins in samples W3 and W4 in vineyards 4 (left), and
W9, W10 in vineyard 5 (right) using Anvi’o and their corresponding alcohol percentages during fer-
mentation (middle; blue square: vineyard 4; orange cross: vineyard 5). GC-content, length of each
contig, and taxonomy classified by Kaiju were displayed in adjunct layers. Each sample is represented
in a separate layer, and each bar inside the sample layer corresponds to a datum computed for a given
split, where contigs longer than 20k bp were divided to different splits. The outermost layer was the
bin layer, where corresponding colors linked with the taxonomy of each bin. Vineyard 4 with 4333
contigs (minimum length: 2500 nucleotides, total nucleotides: 27.29 Mbp) that represented 4% of
all contigs and 36% of all nucleotides found in the vineyard 4 contigs database (93,546 contigs and
total nucleotides: 74.84 Mbp). Vineyard 5 with 5364 contigs (minimum length: 2500 nucleotides,
total nucleotides: 53.01 Mbp) that represented 5% of all contigs and 50% of all nucleotides found in
the vineyard 5 contigs database (92,948 contigs and total nucleotides: 105.44 Mb). The hierarchical
clustering of contigs based on the sequence composition and their sample distribution were used for
the dendrograms at the center of Anvi’o visualization. More bin details are shown in Table A.7 and
Table A.7.
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bins were obtained by assembly and binning. These varied in size between 1.87 and 9.78 Mbp, with
completeness varying from 44.8–94.96%, and redundancy in 0–10% (Table A.7 and Table A.8). For
vineyard 5, six genomic bins were found. These varied in sizes between 2.34 and 12.3 Mbp, with
completeness ranging 54.22–97.84% and redundancy in 0.72–9.35% (Table A.7 and Table A.8). These
vineyards had two yeast and two bacterial bins (Hanseniaspora, Saccharomyces, unresolved Actinobac-
teria, and Pelomonas) assigned to same taxa by annotating the genes to the NCBI’s non-redundant pro-
tein database. Furthermore, vineyard 4 also had a unique unresolved bacterial bin, while vineyard 5 was
found to have two additional bins: one for the non-Saccharomyces yeast Metschnikowia, and another
one for the bacteria Bradyrhizobium (Figure 2.3 and Table A.7 and Table A.8).

As expected in the functional analysis, differentiation was found between fungi and bacteria in the
form of two distinct clusters (Figure A.2). Moreover, for both clusters, we found a high functional
similarity between the same species coming from different vineyards.

The abundance of Hanseniaspora reads was found to be higher in samples W3 (72.0%) and W9
(44.2%) in vineyards 4 and 5, respectively, which had alcohol levels of ca. 1%. At the next time
point sampled (equivalent to around 4% alcohol level), we observed a decrease in relative abundance:
W4 (8.2%) and W10 (22.8%) (fig. 2.3 and Table A.7 and Table A.8)). Furthermore, Saccharomyces
drastically increased by 27-fold in vineyard 4 and threefold in vineyard 5, between the 1–4% alcohol
level (Table A.7 and Table A.8). This indicated the beginning of its early dominance in alcoholic
fermentation. Of the other non-Saccharomyces yeasts solely found in vineyard 5 bins, Metschnikowia
exhibited a similar trend to Hanseniaspora, with a reduction in its amount corresponding to the increase
in alcohol level (Table A.7 and Table A.8).

Interestingly, it was observed that a higher total number of bacterial related contigs, as well as the
percentage of read recruitment, was obtained while a lower number of genes was identified in vineyard
4 than vineyard 5 (Table A.7 and Table A.8). This might be due to a greater bacterial diversity in
vineyard 4 than vineyard 5. Additionally, a decreasing trend in percentage of recruitment of all bacterial
genomic bins was observed together with the increase in alcohol level in vineyard 4. This followed the
observation in the previous subsection with the increase of Saccharomyces activity. The Metschnikowia
bin had 97 unique KOs, with 14 of those characterized as NADH dehydrogenase belonging to oxidative
phosphorylation.

2.3.3 Alcoholic Fermentation Biodiversity

We explored the effect of alcohol level on microbial biodiversity using both the metabarcoding and
metagenomic datasets ((Table A.5 and Table A.6) for details). Overall biodiversity was found to de-
crease during alcoholic fermentation. Specifically, the α-diversity, estimated using decomposed Hill
numbers, clearly decreased with the fermentation progress (as measured in alcohol percentage) in both
the metabarcoding (Figure 2.2 C) and metagenomic datasets (Figure 2.4 A). Interestingly, the vari-
ance of Hill numbers generated and the α-diversity was found to increase with metagenomic filtered
reads (Figure 2.4 A, Table A.5 and Table A.6), suggesting increased species diversity. This observation
was further examined by focusing the analysis on a single vineyard (vineyard 4), using the shotgun
metagenomic data generated at the four different alcoholic fermentation stages (W3–W6, Figure 2.4
and Table A.3). The assigned taxonomies were generated by mapping reads from these samples to the
curated taxonomy database used in the above subsection for metagenomic analysis (Table A.6). In or-
der to identify microbes that followed similar trajectories across the fermentation, affinity propagation
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clustering was applied on the relative abundances of species using Pearson correlation.

Figure 2.4: Analyses of the metagenomic sequenced samples

(A) Alcohol percentage and relationship to α-diversity of metagenomic sequenced samples of mapped
reads show a decrease in α-diversity while gaining again in the end of fermentation. The α-diversity is
shown as a first principal component of decomposed Hill numbers with q-values between 0 and 3. Color
indicates change in variances of log10 fold Hill numbers. (B) A heatmap using pairwise clustering of
mapped reads assigned to species. The assigned taxonomies generated from mapping to raw reads
of the four samples from vineyard 4 to a curated database were clustered to observe patterns using
affinity propagation of Pearson correlation similarities of the mapped reads assigned to species. Five
clusters were found with corresponding cluster exemplars (blue: Saccharomyces cerevisiae, orange:
Erysiphe necator, green: Micrococcus luteus, red: Candida albicans, purple: Yarrowia deformans).
(C) Lineplots of the fifth clustered group of Micrococcus in B show that these mapped reads assigned
to species decrease during alcoholic fermentation, but also start increasing again in the end. (D) An
overview of functional analysis of different groups: bacteria, eukaryotes, opisthokonts, other fungi,
Saccharomycetaceae, and viruses based on the read counts in vineyard 4 during alcoholic fermentation.
Bacterial gene counts are observed to be most affected by the stage of fermentation, while other groups
remain stable. (E) An overview of the changes in the bacterial functions to orthologous groups (COG)
in vineyard 4. The COG groups are C: energy production and conversion, E: amino acid transport
and metabolism, G: carbohydrate metabolism and transport, L: replication, recombination, and repair,
P: inorganic ion transport and metabolism, and S: function unknown. (F) The relative abundance of
binned read recruitment of Anvi’o results. The size of dot increases with the increase in percentage
of recruitment. The Saccharomyces bin is observed to grow during fermentation, while the unknown
Actinobacteria bin is observed to increase in the end of fermentation.

Five clusters were found (Figure 2.4 B), and more in-depth investigation was shown in Table A.4.
The first contained species which showed an increase in their abundances during the fermentation (S.
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cerevisiae) (Figure A.3 A). This principally implied that they were growing and active during fermenta-
tion. A cluster that included Vitis vinifera, Botrytis cinerea, and Erysiphe necator also showed a slight
decrease at the end of alcoholic fermentation (Figure A.3 B). This indicated that they were relatively
stable during the fermentation progress, while the relative abundance shifts might relate to sequencing
effects and cell/DNA degradation which is quite understandable for grapevine DNA. The other two
grape mold species in the same cluster can be deduced as originating from the same effect based on this
unsupervised clustering of Pearson correlation. A third, ambiguous, cluster showed a drastic decrease
from the start, and no further increase until the end of fermentation (Figure A.3 C). Hanseniaspora
dominated in this cluster, that mainly consisted of non-Saccharomyces yeasts that also acted similarly
(Figure A.3 C). This suggested that these species were active in the early fermentation, but perished
as the fermentation progressed. The fourth cluster showed a drastic decrease followed by an increase
during the end of wine fermentation (Figure A.3 D). This group was found to consist of both bacteria
and fungi. We note that the bacteria found in this group belong to families that have been observed to
relate to potential contamination originating from the commercial DNA extraction kit [142] – although
others have also reported them to be found in grapes and wine [137]. The relative abundances of the
final (fifth) cluster that principally contained Micrococcus remained in some samples unchanged, and
decreased in others during the initial phases of fermentation, before increasing and ending up higher
than the abundances at the start of fermentation (Figure 2.4 C).

As the fifth cluster showed unexpected behavior, further investigation was performed through func-
tional analysis on the ORFs obtained with the metagenomic sequencing. Using the eggNOG taxo-
nomic annotation, we separated each sample based on functions derived from fungi, bacteria, virus,
opisthokonts, and other eukaryotes. The majority of the observed functions derived from fungi and
bacteria (Figure 2.4 D). A high number of functional counts that belonged to bacteria were observed at
both the start and end of the fermentation; however, functional counts for fungi remained similar (Fig-
ure 2.4 D). Therefore, the bacteria were further investigated by categorizing these genes to different
COGs. The eggNOG functional classes allowed investigation of gene functional categories of selected
microbial groups (Figure 2.4 E). We observed a significant increase of bacterial functions in the first
and last time points, where the last time point ended up higher than in the start of fermentation. A
high portion of the genes could not be resolved and were assigned with unknown function. The read
recruitment on five genomic bins yielded from assembly and binning were also investigated. The reads
mapped to Hanseniaspora and Saccharomyces bins were found to alter as observed with α-diversity
during fermentation. When looking into the relative abundance of recruited reads, a bin assigned to
unknown Actinobacteria was observed to be increased in abundance in the last sampling date of the
fermentation. This bin had 1969 genes identified with a 82.01% completeness and 0.72% redundancy
[1.87 total size (Mb) and 319 contigs] (Table A.7 and Table A.8).

In order to compare the level of fungal cells between samples, we performed qPCR targeting the
ITS2 gene. Our data indicate that the overall level of fungal cells was lower in stuck samples (Fig-
ure A.4). We subsequently used the metabarcoding data to explore the microbial community differ-
ences between the stuck versus normally behaving ferments. Differential abundance analysis of the
data enabled us to identify six OTUs that showed significant differences between the two phenotypes.
In particular, two OTUs (a Starmerella species and an unknown fungal OTU) were significantly more
abundant in the stuck samples (Figure 2.2 B). The normal ferments contained a significantly higher
abundance of four Ascomycete OTUs, of which three subsequently were classified to Saccharomyc-
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etales order (Saccharomyces, Metschnikowia, unknown Saccharomycetales OTU), while the fourth re-
mained unresolved. For stuck samples, the relative abundance of Starmerella species was observed to
increase in each sampling time relating to longitudinal direction (Figure 2.1 B), whereas Saccharomyces
tended to dominate the normal fermentation behavior phenotype. Chemical analyses identified several
interesting observations on the stuck samples. First, the fermentation speed was slower, and all fructose
was consumed before glucose. Second, the glycerol concentration was observed to be higher in these
samples than in the normal performing samples, when investigating the samples with less than 20 g/L
of fructose (Figure 2.1 C). This suggests that the microbial community in the stuck samples preferably
consumed fructose over glucose when the fungal amount in the community was lower.

2.4 Discussion

Our application of metabarcoding and shotgun metagenomic sequencing techniques to spontaneous
Riesling ferments from four German vineyards enabled us to shed new insights into a number of
questions of relevance to winemaking. Although we find regional differences and that of biodiver-
sity decreases throughout wine fermentation in general, such findings are observed in other amplicon
sequencing-based approaches [125, 111]. Thus, we here discuss in further detail some of the other
findings.

2.4.1 While Metagenomic Approaches Complement Metabarcoding Data by Providing
Preliminary Insights Into Functional Analysis, Some Caveats May Be Warranted

Although both metabarcoding and metagenomic approaches showed that Metschnikowia drove the dif-
ference between vineyards 4 and 5, caveats may be needed when interpreting the results. First, while
the two sequencing methods offer broadly similar information, differences in relative abundances do
exist. One key difference is similar to that previously suggested in the first shotgun sequencing paper
applied to wine samples, where a Metschnikowia abundance bias was found between shotgun analysis
and ITS2 marker gene, with ITS2 marker gene overestimating [133]. Further research and comparisons
of relevant methodologies and workflows will be needed to investigate such different bias further.

Another well-known shortcoming of HTS-based approaches relates to limitations with current ref-
erence databases. It has been long acknowledged that ITS and other fungal marker gene regions have
limited potential for resolving species identity [143, 112], and metagenomic reference databases face
similar challenges when assigning taxonomic labels to metagenomic DNA sequences. For example,
we found that several Saccharomyces species besides S. cerevisiae were mapped in our data, namely,
Saccharomyces paradoxus and Saccharomyces pastorianus (Table A.6). Since previous studies have
reported that S. paradoxus is rarely found in wine fermentations [144, 145], and there is a close evolu-
tionary relationship between S. cerevisiae and S. paradoxus [146], it is possible that our mapping to S.
paradoxus is an artifact driven by close sequence homology [147]. In order to overcome the database
problems, we applied functional analysis and binning strategies to metagenomic data, to make the re-
sults less dependent on only a single database. Although our preliminary metagenomic data have small
sample sizes, further studies could benefit by implementing multiple approaches.

Furthermore, for wine studies, multiple challenges exist as most of the metagenomic algorithms and
annotations are built for prokaryotes, and some included archaea instead of eukaryotic taxa [148]. We
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see this particularly with the assembly of overlapping reads into continuous or semi-continuous genome
fragments and the results from the completeness of binning. Additionally, the taxonomic assignments to
genus level are not particularly satisfying with regard to obtaining useful insights into the fermentation
process, thus, resolution to species or even strain level is needed. Studies on bacterial communities have
shown this is possible in theory, although challenging [149, 150]. For yeasts and other eukaryotes, more
work is particularly needed, as multiple species or strains may be included in a contig due to current
challenges in distinguishing between related community members in both the assembly and binning
processes [151, 152, 153].

Although by complementing our metabarcoding data with metagenomic information we were also
able to provide preliminary functional insights, such analyses are also not devoid of their challenges.
This is predominantly due to the relatively poor state of annotation for most bacterial and fungal
genomes. Thus, while the potential benefits of (meta)genomic analysis are clear, inference is still based
on a rather shaky foundation. We observe this with the Metschnikowia bin, which was found to have
multiple unique functions for NADH dehydrogenases which were mapped to human diseases in KEGG,
due to its oxidative phosphorylation [154]. However, these functions for NADH dehydrogenase relate
to iron metabolism/electron transport/respiration, which have been suggested to be up-regulated by
the MarR-like protein PchR in the pulcherriminic acid biosynthetic pathway of Bacillus subtilis [155].
Similarly to B. subtilis, M. pulcherrima is known to synthesize pulcherriminic acid by utilizing the iron
in the growth medium and causing antimicrobial activities [155, 156]. This ability is suggested to be
the main reason for the role of M. pulcherrima as a biocontrol agent against other non-Saccharomyces
in wine [157]. Additionally, this antagonistic behavior has been found to extend to bacteria in a study
using culturing [158]. In our study, a higher number of bacterial genes, although a lower total num-
ber of bacterial related contigs, were identified in vineyard 5 compared to vineyard 4 (Table A.7 and
Table A.7). This could help to create a less diverse environment for Saccharomyces to dominate and
complete the alcoholic fermentation easier [141]. Therefore, although our metagenomic analysis is
preliminary and clearly limited by the small sample sizes, we believe they provide evidence that there
will be a value in incorporating such approaches to complement metabarcoding and help advance wine
fermentation knowledge.

2.4.2 Although Microbial Biodiversity During Alcoholic Fermentation Generally De-
creases, Metagenomic Sequencing Reveals That Actinobacteria Increase in Rela-
tive Abundance

Although we observed in both our metabarcoding and metagenomic data a decline in microbial biodi-
versity during alcoholic fermentation, one previous metabarcoding study reported that some bacteria
become relatively more abundant (in reads count) in the later stages of fermentations [122]. In general,
lactic acid bacteria and acetic acid bacteria are well known to be able to thrive after the alcoholic fer-
mentation. Consistent with this, we noticed in our metagenomic data from vineyard 4 an increase in
reads relating to the class Actinobacteria during the later fermentation stages, both when recruiting the
read results to binned data, and in the functional assignments (Figure 2.3 and Figure 2.4). Mapping of
the raw reads to the curated taxonomy database tentatively suggested these have a relationship with the
Micrococcus genus. Bacteria from the class Actinobacteria have been previously observed in wines, in
particular Rieslings [130] although without further interpretation [121, 159, 160], and Micrococcus has
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been previously isolated from beer [161], cheese [162], and other fermented foods where it is known to
be able to influence the final product. This can happen through its ability to both produce and degrade
biogenic amines through amino acid decarboxylases [163, 164] as well as, produce volatile sulfur com-
pounds [165]. However, we emphasize that we were not able to map the binned data to a more detailed
taxonomic level, thus are only confident on the classification of this particular bin to the class level.

The dynamic changes of the community composition during fermentation could affect the detection
threshold of the above Actinobacteria, which plays a key role in the unique functional counts. It is
widely known that Saccharomyces dominate the microbial community during alcoholic fermentation,
and that the total microbial biodiversity decreases. These two patterns could be driven by two possible
explanations. First, due to the proportional increase of Saccharomyces to other microbes – given that
we maintained a relatively constant sequencing depth across the samples, we may well be missing less
abundant microbes (such as bacteria). As a result, a big decline in abundance and identified functions
of bacteria would be observed when Saccharomyces levels are at their peak (Figure 2.4 F). A second
explanation could be that the observed decline in bacteria is the actual biological behavior, for exam-
ple, if bacteria enter a survival mode with drastically decreased activity alongside the rapid growth of
Saccharomyces. Toward the end of alcoholic fermentation, the activity of Saccharomyces slows down
and provides space for the growth of bacteria. This possibility is supported by the observed functions of
other groups, such as opisthokonts, and other eukaryotes, where no clear decline is observed but rather
a steady identification rate of their functions across the fermentation (Figure 2.4 D). Additionally, we
cannot rule out the phenomenon of spurious correlation that is a well-known potential occurrence in
compositional data, therefore with bigger sample sizes, a more in-depth analysis to the pairwise as-
sociations could be applied. Yet, we cannot rule out that the potential functionality and the change in
abundance of the actual species is a real observation, although we could not relate this to the specificities
in bacterial potential functionality, as most of the annotations remained unresolved (Figure 2.4 E). The
behavior was unlike the one observed for the cluster containing V. vinifera. Clearly, further validation
through multi-omic studies with larger sets of samples would be useful for exploring this further.

2.4.3 Starmerella and Stuck Fermentation Behavior

Both our metabarcoding and chemical analyses also showed that the samples with stuck fermentation
behavior during alcoholic fermentation associated with both the presence of fructophilic Starmerella
and absence of Saccharomyces (Figure 2.1 and Figure A.4). These findings are consistent with those
from previous studies in which Starmerella (synonym Candida zemplinina) had been investigated be-
cause of its known fructophilic characters, aroma profile as well as lower ethanol production, and
elevated glycerol contents [166, 167, 168]. Based on inoculation studies, it has been shown that
Starmerella has a reduced rate of fermentation [169] and requires S. cerevisiae to finish the alcoholic fer-
mentation [168]. Indeed, the lower amount of fungal cells found in the samples instead of the abundant
Starmerella might better explain the sluggish fermentation rate (Figure A.4). In addition to providing
the first HTS-based insights into this, our results provide the first evidence of these characteristics in
samples taken from natural winemaking environments. Our dataset also enabled us to observe that
samples with more Starmerella had reduced levels of Botrytis. This is intriguing given that Starmerella
was isolated for the first time from sweet botrytized wines with high fructose-glucose ratio [170, 171].
Thus, we suggest that further investigation into the relationships between Starmerella and other fungal
genera using HTS techniques may be of interest, as specific links between Starmerella and winemaking
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environment have not currently been established [168].

2.5 Conclusions

In summary, we demonstrate the power of HTS-based tools in characterizing microbial community dif-
ferences and fermentation population dynamics. For instance, we found that Metschnikowia drove the
difference between two vineyards during alcoholic fermentation, we revealed the increase of Actinobac-
teria relative abundance, and that the stuck fermentation behavior during alcoholic fermentation was
associated with both the presence of Starmerella and absence of Saccharomyces. While both metage-
nomic and metabarcoding approaches were found to deliver similar results, the former provides a more
in-depth understanding given it offers an untargeted taxonomical analysis, as well as enabling insights
at the functional level. Ultimately as other such studies appear, we anticipate that the HTS-based tools
will catalyze significant further future wine microbial research.

2.6 Material and methods

2.6.1 Fermentation Set Up and Sample Collection

A fermentation experiment was carried out with grapes from four Riesling vineyards in the Pfalz wine
region of Germany in Autumn 2015, in order to investigate spontaneous fermentation dynamics, i.e.,
fermentation derived solely from vineyard, rather than winery, microbes. From each commercial vine-
yard (each also has a different owner), 8 kg of grapes were handpicked following a random pattern
throughout the vineyard into autoclaved sterile flat plastic bags (Neolab). These were sealed inside
the vineyards and later processed at the Institute for Viticulture and Oenology, Dienstleistungszentrum
Ländlicher Raum Rheinpfalz, Neustadt an der Weinstraße, Germany. The microvinifications were car-
ried out in sterile conditions under a laminar flow hood, to restrict fermentation to only those microbes
present in the vineyards. After crushing and pressing, the must from each vineyard was left in 3 L
sterile autoclaved Erlenmeyer flasks (Duran, Germany) for overnight sedimentation at 4°C. After set-
tling, must was racked into duplicate 1 L autoclaved Erlenmeyer flasks (Duran, Germany) and secured
with silicone bungs attached to distilled water filled airlocks. Sample collection was done over 4 dif-
ferent days during alcoholic fermentation, with 4.5 mL of fermenting must collected at each timepoint
for subsequent DNA analysis (total 32 extracts, Table 2.1), and 40 mL collected for monitoring of the
fermentation by measuring various wine parameters (alcohol, density, total sugar, glucose, fructose,
glycerol, titratable acidity, pH, tartaric acid, malic acid, lactic acid, citric acid, volatile acid, glycerol,
yeast assimilable nitrogen, primary amino nitrogen (NOPA), and ammonium with routine FTIR analy-
sis (WineScan FT120, FOSS Electric)]. Furthermore, the alcohol percentage was estimated by dividing
the product of measured alcohol (g/mL) and sample density (g/mL) by 10 times the density of ethanol
(g/mL). In general, estimation of the fermentation progress through changes in density or alcohol con-
centration is complicated without continual monitoring of the must. However, it has been observed
that continuous monitoring can potentially expose must to contaminating microbes [172, 173, 174],
and therefore, we chose instead to sample four times during the fermentations. Details of samples and
measured wine parameters are shown in Table A.1 and Table A.2.
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Table 2.1: Table of samples overview

No.
Sample
name

Metagenomic
sample ID

Vineyard
Biological
replicate

Sampling
date

Alcohol
percentage

1 w2a109 2 a 09-Oct 0.5
2 w2b109 2 b 09-Oct 1.3
3 w3a109* W1 3 a 09-Oct 1.5
4 w3b109 3 b 09-Oct 6
5 w4a109* W3 4 a 09-Oct 1
6 w4b109 4 b 09-Oct 1
7 w5a109 5 a 09-Oct 0.22
8 w5b109 5 b 09-Oct 0.14
9 w2a112 2 a 12-Oct 1.11
10 w2b112 2 b 12-Oct 1.62
11 w3a112* W2 3 a 12-Oct 5.65
12 w3b112 3 b 12-Oct 9.51
13 w4a112* W4 4 a 12-Oct 4.93
14 w4b112 4 b 12-Oct 1.79
15 w5a112* W7 5 a 12-Oct 0.87
16 w5b112* W9 5 b 12-Oct 1.49
17 w2a114 2 a 14-Oct 1.13
18 w2b114 2 b 14-Oct 1.99
19 w3a114 3 a 14-Oct 8.18
20 w3b114 3 b 14-Oct 10.64
21 w4a114* W5 4 a 14-Oct 8.44
22 w4b114 4 b 14-Oct 2.16
23 w5a114* W8 5 a 14-Oct 3.85
24 w5b114* W10 5 b 14-Oct 4.86
25 w2a120 2 a 20-Oct 1.65
26 w2b120 2 b 20-Oct 3.66
27 w3a120 3 a 20-Oct 11.41
28 w3b120 3 b 20-Oct 11.85
29 w4a120* W6 4 a 20-Oct 12.34
30 w4b120 4 b 20-Oct 3.47
31 w5a120 5 a 20-Oct 10.5
32 w5b120 5 b 20-Oct 10.34

Each sample name can be used to identify the vineyard name (first two characters), biological repli-
cate (a or b), and the sampling date in 2015 (last two numbers). ∗Samples selected for metagenomic
sequencing.
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2.6.2 DNA Extraction

Prior to DNA extraction, each sample, was centrifuged at 4500 × g for 10 min, after which the super-
natant was removed and the pellet resuspended with 1 mL of ice-cold 1X PBS (pH 7.4, Life Technolo-
gies, Camarillo, CA, United States). The resuspended samples were washed twice with 1 mL of ice-cold
1X PBS to remove debris. The pellets were subsequently stored at −20◦C until DNA extraction. DNA
extractions were performed as described in a parallel study [175], with the use of FastDNA Spin Kit
for Soil (MP Biomedical, Santa Ana, CA, United States) following the manufacturer’s protocol with
minor modifications. In brief, pellets were bead-beaten twice at 30 Hz for 40 s using a TissueLyser
II (Qiagen, Hilden, Germany), with cooling step on ice for 2 min in between bead-beating steps. In
the elution step, 105 µL of 1X TET buffer (1X TE buffer in 10 mM Tris-HCl, 1 mM EDTA, pH 8.0,
Sigma–Aldrich, and 0.05% Tween 20, Sigma–Aldrich) was added to the filter column then incubated
at 55◦C for 5 min before elution. DNA was subsequently subjected to an extra purification step using
a DNA Clean and ConcentratorTM-5 (Zymo Research, Irvine, CA, United States), and eluted in a final
volume of 55 µL of 1X TET buffer. DNA extracts were quantified using a Qubit 1.0 fluorometer with
dsDNA High Sensitivity Assay kit (ThermoFisher Scientific). An extraction blank was included for
every 16 samples.

2.6.3 qPCR

Prior to metabarcoding PCRs, we used quantitative real-time PCR (qPCR) to both estimate the number
of copies of the region, thus determine the number of PCR cycles, and to identify whether PCR in-
hibitors were present in the DNA extracts. For both qPCR and metabarcoding, we used fusion primers
targeting the fungal internal transcribed spacer 2 region (ITS2, ITS7_F from Ihrmark et al., 2012 and
ITS4_R from White et al., [176]), each containing an exclusive 8 bp multiplex identifier tag (MID tag)
and MiSeq sequencing adapters.

Each qPCR reaction consisted of a 25 µL reaction volume containing 2 µL of template and 23
µL of mastermix containing 1X GeneAmp®10X PCR Buffer II (Applied Biosystems, United States),
2.5 mM MgCl2 (Applied Biosystems, United States), 0.8 mg/mL bovine serum albumin (BSA), 1 µL
SYBR Green (Invitrogen, Carlsbad, CA, United States), 0.25 mM dNTPs, 0.4 µM forward primer, 0.4
µM reverse primer, 0.25 µL AmpliTaq Gold DNA polymerase (Applied Biosystems, United States), and
14.5 µL AccuGene molecular biology water (Lonza). qPCR conditions were as follows: 95°C for 5 min,
followed by (95°C for 30 s, 52°C for 30 s, and 72°C for 45 s) for 45 cycles, and a final dissociation curve
of 1 cycle of 95°C for 1 min, 55°C for 30 s, and 95°C for 30 s. PCRs were performed using a MX3005
qPCR machine (Agilent). Standard curves with duplicates were generated using a 10-fold serial dilution
(101–109 copies/µL) of PCR products generated by DNA from Cortinarius hinnuleoarmillatus with the
same primer set. Positive controls and negative controls were included.

2.6.4 PCR and Metabarcode Sequencing

We applied metabarcoding to all DNA extracts. Extraction blanks, positive controls, and PCR negative
controls were included to monitor for contamination. Metabarcoding PCRs were based on the same
mastermix as that used in the qPCR, except replacing 1 µL SYBR Green (Invitrogen, Carlsbad, CA,
United States) with 1 µL AccuGene molecular biology water (Lonza, Switzerland). PCRs were carried
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out in AB 2720 Thermal cycler (Applied Biosystems, United States) with the following conditions:
95◦C for 5 min, followed by 33 cycles of 95◦C for 30 s, 52◦C for 30 s, and 72◦C for 45 s, and a
final elongation step of 72◦C for 10 min. PCR products (∼480 bp) were visualized by electrophoresis
using 2% agarose gels, then subsequently pooled together with amplicons derived from a parallel study
[175] into three amplicon pools. Amplicon pools were subsequently purified with QiaQuick columns
(Qiagen) following the manufacturer’s protocol to remove primer dimers. An aliquot of each amplicon
pool was used for quantification and size estimation using the High-Sensitivity D1000 Screen Tape for
Agilent 2200 TapeStation (Agilent). Lastly, purified amplicon pools were sent for sequencing in two
flow cells on the Illumina MiSeq platform in 250 bp paired-end mode at The Danish National High-
Throughput DNA Sequencing Centre, Copenhagen, Denmark. This dataset comprised two-third of a
MiSeq flow cell.

2.6.5 Shotgun Library Construction and Metagenomics Sequencing

We additionally generated shotgun metagenomic data on a subset of ten of the samples. These were
chosen as samples exhibiting normal fermentation rate, with a focus on varying alcohol levels (espe-
cially in early fermentation stages), different vineyards, and given the fungal diversity observed during
the metabarcoding. Metagenomic sequencing (Table 2.1 and Table A.3) was performed with BGISeq
technology [177], although with a customized library build. The DNA extracts were initially frag-
mented to around 300 bp using a Bioruptor 300 (Diagenode, Belgium) using 10 cycles of 30 s on
and 90 s off. The DNA was then converted into indexed sequencing libraries using the Blunt End
Multi Tubes (BEMT) protocol (Appendix A.1), following an initial comparison of the performance
of different library construction methods on DNA extracted from ferment samples (Appendix A.1 and
Figure A.5). Library blanks and index PCR blanks were included; 30 µL (input amount: <0.3–6.6
ng) of each sample was used for each library constructions (Table A.3) and 2 µL of 10 µM BGI 2.0
adapters (Table A.4) were added to each sample in the adapter-ligation step. Each library was quantified
using qPCR post-construction in order to determine the appropriate number of PCR cycles to subject
each to. This was done using a MX3005 qPCR machine (Agilent) with the forward primer and one
indexed reverse primer. Post-qPCR, each library was subsequently PCR amplified and indexed with
different indices and purified for residual adapter dimers using SPRI beads (Sigma–Aldrich) in 1.5X
beads:library ratio with incubation at 37◦C for 10 min and eluted in 50 µL. All libraries were then sent
to BGI-Europe for sequencing, where they were pooled in equimolar concentrations for circularization,
DNA nanoballs (DNBs) construction, and sequencing on the BGISeq-500 platform over four lanes in
100 bp pair-ended mode.

2.6.6 Sequencing Data Analysis

Metabarcoding Sequencing Analysis

Metabarcoding sequence analyses were performed following the pipeline described in Feld et al. [178],
although with modifications in trimming, post-clustering, and the use of databases. Raw reads were
merged and demultiplexed using vsearch v2.1.2 [179]. Cutadapt v1.11 [180] was used for removal of
adapters and primers. Reads smaller than 100 bp were trimmed with vsearch, followed by dereplication.
Singletons and chimeras were filtered using the UPASE pipeline [181], and the reads were clustered
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to operational taxonomic units (OTUs) with the command – cluster_otus. Reads were mapped back
(including singletons) to the filtered clusters with 99% similarity using usearch v9.0.2132 [182] in order
to create the OTU table, then subjected to the post-clustering algorithm LULU [183] as implemented
in R v3.4.1. Filtered OTUs were then aligned with the reference UNITE+INSD database released on
2017.12.01 (UNITE Community 2017) for taxonomic assignment to genus level, with 97% identity
threshold, 70% coverage in BLAST using QIIME v1.9.1 [100] with a modified assign_taxonomy.py
script. OTUs that did not obtain taxonomic assignment in the above were labeled as “No blast hit.”

Metabarcoding data were analyzed using phyloseq [184] framework in R (v3.4.0). OTUs with fewer
than 10 reads [185, 186] and samples with fewer than 1000 reads were discarded for further analyses.
Furthermore, OTUs with “No Blast Hit” were also removed from analyses. The α-diversity was eval-
uated with relative abundances and Hill numbers (Hill, 1973). Hill numbers were calculated using q-
values between 0 and 3 with 0.001 intervals [187]. The resulting matrix was decomposed with principal
components analysis (PCA), with retention of the first principal component as a measure of the over-
all effect of α-diversity. The variance of the Hill numbers was additionally retained for visualization.
Heatmap visualization and clustering were done on variance stabilized transformed [188] count data
using DESeq2 [189] with hierarchical clustering using weighted linkage (WPGMA) [190] on Pearson
correlation. Furthermore, differential abundances and corresponding log2 fold changes and adjusted
p-values were found using DESeq2 [189]. DESeq function parameters were set as following: test type:
“Wald”; fittype: “parametric.” Significant differences between relative abundances were controlled by
setting false discovery rate (FDR) at 5% using the method by Benjamini and Hochberg [191]. OTUs
whose abundances differed significantly between vineyards were visualized with letter-value boxplots
(boxenplots) [192] of the raw count data.

Metagenomic Data Analyses

The metagenomic data analysis consisted of two stages. In the first stage, the raw sequence reads were
analyzed individually for each sample. In the second stage, a binning approach was used, where anal-
yses were performed on the total sequence data from each of the two vineyards (specifically vineyard
4 and vineyard 5). This was used to specifically explore for differences in the microbial communities
relating to alcoholic fermentation or vineyard of origin.

For all analyses, the qualities of all paired-end reads were checked using FastQC [193], both before
and after adapter removal using Trim Galore [194] and Cutadapt [180], with the following parameters:
default Phred score: 20 and cutoff for read length: 40 bp for filtering. All reads containing “N” were
also filtered and the filtered reads were subsequently merged to compile with IDBA-UD [195] for
sequence assembly. MEGAHIT v1.0.4 [196] was then used for sequence assembly, with metagenomic
parametrization for either individual samples (Stage 1) or binning by individual vineyards (Stage 2).

For taxonomic assignment of the trimmed metagenomic reads, a curated database was constructed
using the genomes of 130 relevant species, including eukaryotes and bacteria. This database is similar
to, but expanded on, that used in a previous study [133] (Table A.6). These sequences were obtained
from NCBI and used to construct a custom Kraken database. Relative abundances were obtained by
mapping using Kraken v.1.0 [197] and Braken [198]. Further data analysis was performed in R v.3.4.4
with phyloseq [184] and other custom scripts. The Kraken mapped reads that were higher than 0.00001
relative proportion were retained for clustering which was done on Pearson correlation similarities us-
ing affinity propagation [199, 200]. A general workflow to assess the most suitable number of clusters
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was started by setting the exemplar preferences value high, which led to a very large number of clus-
ters. Application of agglomerative clustering on the resulting affinity propagation clusters allowed an
inspection of the corresponding dendrogram. Based on the dendrogram, a cutoff was manually decided
and affinity propagation was rerun repeatedly to achieve the desirable number of clusters. Prodigal
[201] was used to predict the open reading frames (ORFs), with parameterization for metagenomes of
individual samples (Stage 1), or binned by samples per vineyard (Stage 2), as detailed above. In order
to perform the functional analysis, the ORFs were then used as an input for eggNOG [202], to obtain
KO (KEGG Orthology) assignments and Clusters of Orthologous Groups (COGs) as functional anno-
tations. The unique KOs generated for each sample individually were combined using custom Python
and R scripts and were used to create a matrix of total 8744 KO, which were combined in a matrix
with unique 412 pathways according to KEGG for all samples together. The KO pathway enrichment
analysis was done using the following packages: Biostrings [203], ggplot2 [204], reshape [205], KEG-
GREST [206], lattice [207], apcluster [199, 200], BioServices [208], and pandas [209].

For the binning approach (Stage 2), assemblies were performed with MEGAHIT on the pooled
data from vineyards 4 and 5, respectively, in order to create their corresponding contig files. Next, the
trimmed sequences from the data pre-processing steps for each sample were mapped to their corre-
sponding vineyard assembled contigs files using the bwa-mem algorithm v0.7.15 [210]. The mapped
sequences were subsequently cleaned of PCR duplicates using samtool v1.6 [211] and exported as
BAM files for binning. Binning was subsequently performed and the output was visualized with the
metagenomics workflow1 in Anvi’o v5.1’s interactive interface [212]. Each assembled contig was used
to create corresponding Anvi’o contig databases using the default settings. The databases were then
run under HMMER v3.1.b2 [213] for sequence searching using Hidden Markov Models (HMMs), and
genes were annotated with functions from the NCBI’s COGs [214] using command anvi-run-ncbi-cogs.
The genes in the contig database were classified using Kaiju v1.5.0 [215], with NCBI’s non-redundant
protein database including fungi and microbial eukaryotes. Each of the sample bam files derived from a
single vineyard was profiled with their corresponding annotated contigs database, with minimum contig
length set to 2500 nt using the command anvi-profile, then merged to generate bins using CONCOCT
as implemented in Anvi’o. Bins with completeness ≥40% and redundancy ≤10% were retained for
analysis [216]. Abundance of the reads was estimated in terms of percentage of read recruitment. This
was calculated by the mean coverage of each split in each bin with normalization of all bins respect
to each other in each sample. For functional assignment of the bins, 6394 KOs were generated when
combining the 11 bins, which resulted in 411 unique pathways.

All figures, except those from Anvi’o were visualized using ggplot2 [204], Matplotlib [217], and
Seaborn [218], with further post-processing done in Inkscape v0.912. The sequencing data were de-
posited to European Nucleotide Archive under study number: PRJEB30801 and ERS3017411-ERS3017414,
ERS3017423-26, ERS3017435-38, ERS3017447-50, ERS3017459-62, ERS3017471-74, ERS3017483-
86, ERS3017495-98 in study number: PRJEB29796.
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Chapter 3

Finding functional differences between
species in a microbial community: case
studies in wine fermentation and kefir
culture1

3.1 Abstract

Microbial life usually takes place in a community where individuals interact, by competition for nutri-
ents, cross-feeding, inhibition by end-products, but also by their spatial distribution. Lactic acid bacteria
are prominent members of microbial communities responsible for food fermentations. Their niche in a
community depends on their own properties as well as those of the other species. Here, we apply a com-
putational approach, which uses only genomic and metagenomic information and functional annotation
of genes, to find properties that distinguish a species from others in the community, as well as to follow
individual species in a community. We analysed isolated and sequenced strains from a kefir commu-
nity, and metagenomes from wine fermentations. We demonstrate how the distinguishing properties of
an organism lead to experimentally testable hypotheses concerning the niche and the interactions with
other species. We observe, for example, that L. kefiranofaciens, a dominant organism in kefir, stands
out among the Lactobacilli because it potentially has more amino acid auxotrophies. Using metage-
nomic analysis of industrial wine fermentations we investigate the role of an inoculated L. plantarum
in malolactic fermentation. We observed that L. plantarum thrives better on white than on red wine
fermentations and has the largest number of phosphotransferase system among the bacteria observed in
the wine communities. Also, L. plantarum together with Pantoea, Erwinia, Asaia, Gluconobacter and
Komagataeibacter genera had the highest number of genes involved in biosynthesis of amino acids.

1Published in collaboration with Willi Gottstein, Sonja Blasche, Yongkyu Kim, Martin Abel-Kistrup, Hentie Swiegers,
Sofie Saerens, Nathalia Edwards, Kiran R. Patil, Bas Teusink and Douwe Molenaar in Frontiers in Microbiology;10;1347,
(2019), 10.3389/fmicb.2019.01347 [219]

38



3.2 Introduction

Lactic acid bacteria (LAB) are a group of microorganisms widely used for production of fermented
food. They play a key role as natural fermentors or are used as starting cultures for a large variety of
foods [220], such as dairy products, kefir and yogurt [221]. LAB are also used in alcoholic beverage
production with a prominent role in winemaking, due to their capacity to perform malolactic fermenta-
tion (MLF) [222, 223]. In none of these environments do they live in isolation but rather in communities
of microscopic and macroscopic scale, for example on the skin and in biofilms. Therefore, LAB should
be studied not only in isolation but also as a part of communities. Consequently, there is a strong desire
to understand their roles in microbial communities, for example in their stability of communities. A
deep understanding of these roles would enable alterations or even design of communities that serve
a certain purpose. Results in this direction have already been achieved for small consortia, usually
consisting of two species [224, 225, 226]. However, interactions in natural communities consisting of
dozens to thousands of species are hard to analyze.

For complex communities, dynamic abundance data has been used to infer interactions between
species within a community [227]. While this can indeed lead to testable predictions, these results can
also be very hard to interpret as they do not provide any detail of their underlying mechanism. For
example, a positive correlation between two species can be caused by niche-overlap, cross-feeding or
because these two species are both affected by a third one [227]. To distinguish these options, the
metabolic potential of the individual species should be taken into account as many of the interactions
will probably take place at the level of exchange of metabolic products. These analyses currently
typically require large-scale metabolic models [228, 89, 229, 226]. The reconstruction of such models
is a time-consuming process as it usually requires manual curation, experimental validation, gap-filling,
and an organism-specific biomass composition. As typically only a small percentage of species within
a community can be cultured individually, the generation of high quality models for all members of a
community is close to infeasible. Attempts to do so [230] suffer from a lack of detailed validation of
the predictions. Therefore, approaches that rely on genome-scale stoichiometric models are currently
mostly applicable to small well-described (synthetic) communities [231, 224, 225, 232, 229, 226] but
even there one encounters many technical and biological challenges [93].

In this paper, we use a purely data-driven approach, with genomic information as primary input, that
allows the creation of hypotheses about metabolic and other physiological properties of species in com-
munities without the need to reconstruct detailed genome-scale metabolic models. The starting point of
this analysis is gene annotation; we use the KEGG Orthology (KO) Database [233] whereby each KO
represents a group of gene orthologs from different organisms associated with a molecular function. As
KO’s alone can be hard to interpret, we also map these KO’s on KEGG pathways. This higher level
mapping reveals discriminating features between organisms and leads to testable hypotheses about their
metabolic and physiological characteristics. Although we used the KEGG annotation tool and database,
alternative resources such as Gene ontology(GO), SEED and MetaCyc [234, 235, 236] could be used
and yield comparable results [237, 238].

We apply this computational pipeline on two different case studies. Firstly, to investigate Kefir
a fermented milk product made with kefir grains, which consist of a complex microbial community
embedded in a polysaccharide matrix. These communities consist of dozens of species [239] whose
metabolic capacities are largely elusive. Studies of the kefir community using metagenomic barcoding
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already showed that Lactobacillus was the most abundant genus, specifically the species Lactobacillus
kefiranofaciens, Lactobacillus buchneri and Lactobacillus helveticus [240]. We expect that knowledge
of their metabolism will provide more insight in their interactions in kefir and, therefore, we investigated
genomes of 30 organisms isolated from kefir for their potential metabolism.

The second application of the pipeline is in understanding the role of L. Plantarum MW-1 in wine-
making, by a functional comparison of microbial communities in three varieties of wine. Microbial
activities are crucial in the formation of wine flavour and aroma. A prerequisite for improving wine-
making is to understand the dynamics of the microbial communities in wine and the interactions that
take place during the fermentation [241]. The alcoholic fermentation (AF) at the initial stage of wine-
making is performed mainly by Saccharomyces cerevisiae. Subsequently, Oenococcus oeni, which due
to its overall resistance to the harsh conditions of wine fermentation, such as high alcohol concentra-
tions, is the best candidate to start a MLF [242, 243]. Various studies indicate the possibility to use
alternative MLF starters. L. plantarum strains received interest to fulfill this role [244, 245], due to
their characteristic fermentation profile. To investigate the influence of L. Plantarum MW-1 on the
development of the microbial communities we followed its inoculation in three different wine vari-
eties (Bobal, Tempranillo and Airen) from La Mancha, Spain, 2013 (one inoculated and two control
fermentations per variety (Figures A.10 and A.11). The point of inoculation was chosen to be at the
start, to give precedence of MLF over AF. In this way, a reduction of total fermentation time is obtain-
able, and inhibition of L. plantarum by high alcohol levels is avoided. We used metagenome shotgun
time-series from these fermentations to study the community. Although next-generation sequencing
(NGS) has recently been applied in food research and particular in wine fermentation [246, 247], the
usage of metagenomic shotgun sequencing that allows a direct identification and comparison of the
functional potential capabilities for a microbial community and its members, is not yet fully exploited
[248, 249, 250].

3.3 Results

3.3.1 Grouping of genera based on presence of KO’s

We isolated and sequenced 33 organisms from kefir communities (Section 3.5.1 for details). To identify
discriminative factors between species, we first focused only on the presence and absence of KO’s
per species and cluster the species based on the KO content using affinity propagation. Hierarchical
clustering on top of this result identified eight distinct clusters that separate and in some cases subdivide
the genera of Lactobacilli, Lactococci, Rothia, Acetobacter, Staphylococci and Micrococci (Figure 3.2).
See Section 3.5.7 and Figure A.6 for details. This result shows that the KO content alone already has
discriminative power and can also lead to non-trivial results, as not only organisms of the same genus
group together but also organisms of different genera. The interpretation of the results is, however,
not straightforward as the molecular functions assigned to the KO’s cannot easily be translated into
predictions about physiological characteristics that distinguish the clusters. Therefore further analyses
is required, as described below.
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Figure 3.1: Graphical representation of the general work-flow for the functional analysis.
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Starting point of the analysis is gene annotation which is carried out using BlastKoala and GhostKoala
in this study. We use the gene orthologs (KO’s) to cluster species and samples based on their KO
content. From the individual clusters we extract the characteristic features which leads to educated
predictions about the functional potential of individual species and a community present in a sample.
In the case of isolates, the predictions are confirmed using MetaDraft that does not rely on KO’s.
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Figure 3.2: Isolates of the kefir consortium can be grouped using annotated genomes.
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In panel A, species are clustered based on presence and absence of KO’s yielding eight different clusters.
A similar result is obtained when species are clustered based on pathway enrichment i.e. the number of
KO’s present per pathway (panel B).

3.3.2 KEGG pathway coverage discriminates two groups of Lactobacilli

To understand the clustering results better, we mapped the KO’s to the level of KEGG pathways and
calculated pathway coverage (which is the number of KO’s present in this organism in this pathway
divided by the total number of KO’s in the pathway, see Section 3.5.7). Pathway coverage was subse-
quently used as input for another clustering. The resulting hierarchical clustering shown in Figure 3.2
is similar to the one obtained based only on KO presence, except for the Lactobacilli. Whereas these
form a single cluster in the previous dendrogram, they are distributed over two clearly separated clusters
when using pathway coverage.

To identify the pathways that discriminate the two groups of Lactobacilli, we determined all path-
ways that have a high standard deviation with respect to their coverage. They are shown in Figure 3.3.
The most notable differences are associated with amino acid metabolism: In L. kefiranofaciens, his-
tidine, phenylalanine, tryptophan and tyrosine metabolism is completely absent while the remaining
Lactobacilli all have KO’s associated with the synthesis pathways for these amino acids. Conversely,
L. kefiranofaciens has 27 entries on the phosphotransferase system (PTS) pathway map, whereas the
remaining Lactobacilli have at most 7 KO’s on this map (Figure A.7).

3.3.3 Identifying discriminating signaling pathways and structural components

This method is not restricted to metabolism but can also make predictions about structural and signal-
ing components represented in KEGG pathways. By identifying the pathways that show the highest
standard deviation with respect to their coverage between a representative of each of the clusters, we
found that only Acetobacter has KO’s associated with flagella assembly (Figure 3.3). They also have
the highest pathway coverage for bacterial chemotaxis (Figure 3.3) which is related to oxygen sensing.
Since they are strict aerobes [251] both observations would be in agreement with the hypothesis that
they use chemotaxis to move on oxygen gradients, and possibly also on gradients of their carbon- and
energy source. The presence of flagella in Acetobacter was experimentally confirmed (Section 3.5.9).
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Figure 3.3: Pathway enrichment reveals differences between organisms within one cluster and between
clusters.
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In panel A, the six lactobacilli isolated from the kefir consortium are compared regarding their path-
way coverage. We show the KEGG pathways that have the highest standard deviation based on their
pathway coverage. The organisms differ significantly in coverage of e.g. histidine, phenylalanine, tryp-
tophan and tyrosine metabolism. These pathways are absent in L. kefiranofaciens but present in all
other lactobacilli (Panel B; green means that a KO is present associated with the respective reaction.
As there are no KO’s found in the maps for L. kefiranofaciens, the maps are not shown). In panel C, the
representatives of each cluster (determined by affinity propagation) are compared and the pathways are
listed that show the highest standard deviation regarding their pathway coverage. Acetobacter (Asyzy-
gii_2_380) have the highest enrichment for both flagella assembly and chemotaxis (discussed in the
main text).

43 CHAPTER 3. FINDING FUNCTIONAL DIFFERENCES IN WINE AND KEFIR



3.3.4 Results of KO annotation are consistent with systematic pathway reconstruction

These analyses show that it is possible to create hypotheses about metabolic capacities and structural
properties in a fast manner using annotated genomes, in this case annotated with KO’s. As only around
50% of the coding sequences can be mapped to KO’s (Table A.9), there is the possibility that important
reactions which do not have KO’s associated with them are missed. Therefore, we confirmed the results
shown in Figure 3.3 using an approach that does not rely on KO’s but uses only sequence informa-
tion. For the KEGG maps containing histidine and phenylalanine, tyrosine and tryptophane synthesis
pathways, respectively, we created stoichiometric models by retrieving all genes associated with reac-
tions in the respective pathways that belong to organisms of the phylum Firmicutes which also covers
the genus Lactobacillus. Subsequently, InParanoid [252] was used to find orthologs in sequences of
the kefir isolates, the corresponding reactions were identified and compared to the reactions associated
with present KO’s. The results obtained in this way are consistent with the BlastKoala output (Fig-
ures A.8 and A.9, and see Section 3.5.9 for details), however, the analysis is far more time-consuming
than running BlastKoala even if only these two pathways are considered.

3.3.5 Dynamics of genera in wine fermentations

The metagenome of each sample was assembled into contigs and scaffolds (Section 3.5.6). The open
reading frames (ORF’s) on these sequences were identified and annotated with KO’s using GhostKoala.
An overview of the dynamics of abundances of genera was obtained by summing the KO coverage,
i.e. the number of reads mapped to the ORF corresponding to the KO, per genus, in each of the sam-
ples (Figure 3.4). Although our basic computational pipeline aims to explore the functional potential
of the community, in metagenomics the overview of abundance dynamics can be obtain without extra
workload. The table of genera abundances was normalized, and genera with a high standard deviation
of abundance across the samples were kept (Section 3.5.7). A few notable patterns appeared. Firstly,
the Lactobacillus genus is highly abundant in the samples inoculated with L. plantarum. However, the
abundance of Lactobacillus diminished in time when inoculated in the two red grape varieties, Bobal
and Tempranillo, whereas in the white grape variety, Airen, it was highly abundant and the abundance
increased during the fermentation. Furthermore, Lactobacillus was also present in the Airen controls,
in contrast to the control fermentations of the red varieties. Secondly, the abundance of Lactobacillus
in the Airen variety seems to correlate negatively with the abundance of two genera Aspergillus and
Sclerotinia, which are spoilage molds. Thirdly, the abundance of Lactobacillus is positively correlated
with multiple genera such as Pediococcus, Enterococcus, Oenococcus (Figure 3.4). Fourthly, some
genera are present in fermentations of all three grape varieties, like Pseudomonas, Azotobacter, Vitis
and Saccharomyces. Fifthly, some genera occur in fermentations of one variety only, such as Pan-
toea and Gluconobacter in Airen, Dyella and Rhodanobacter in Tempranillo, and Bradyrhizobium and
Acetobacter in Bobal (Appendix A.2.6, for a systematic investigation of discriminative genera and the
corresponding pathways for each wine variety). Finally, the observation of Saccharomyces and Vitis
(grape) DNA is in agreement with the prior knowledge that during the alcoholic fermentation Saccha-
romyces abundance is high and that grape skins are only added at the start of the red wine fermentations
and not in the white wine fermentations.
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Figure 3.4: Three types of wine fermentations dynamics.
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3.3.6 Clustering of samples based on KO abundance in genera

The mapped data were used to create a table of the KO abundances per genus, which increases the
feature space substantially relative to summing these numbers per genus as done above. The samples
were clustered using affinity propagation on the Pearson correlation matrix of this table (Section 3.5.7).
This resulted in a high resolution grouping of samples (Figure 3.5), evidently better than when using
reconstructed small subunit (SSU) rRNA abundances (Figure A.16). The microbiomes of the red and
white grape varieties could be distinguished, as well as three different stages of fermentation separating
the samples of the initial grape must phase, the samples during fermentation, and bottled or final sam-
ples of the time series. Finally, the samples of the Airen variety inoculated with L. plantarum formed
a highly correlated separate cluster. The robustness of the clustering was tested by removing major
genera (Lactobacillus, Oenococcus and Saccharomyces) and a potential artifact (Vitis) from the data
and reapplying the clustering. The main groups remained essentially unchanged after this procedure
(Figure A.21).

3.3.7 L. plantarum has the highest PTS potential among the community

To confirm that the Lactobacillus genus pattern identified so far is indeed the result of the added L.
plantarum MW-1 strain, we applied a 16S-rRNA reconstruction and binning (Appendices A.2.4, A.2.5
and A.4.8). As a result we obtained a reconstruction of 16S-rRNA genes of L. plantarum. Moreover, the
L. plantarum draft genome was successfully binned with a high completeness score. Using a few well
reconstructed genomes from the binning process, we demonstrate the potential usage of our method
also on metagenomic bins. We compared the L. plantarum isolate strain with the reconstructed Lacto-
bacillus brevis genome bin from the Airen fermentations and the three reconstructed Oenococcus oeni
genome bins from each variety of grape. The comparison revealed that the L. plantarum and L. brevis
bins had a higher metabolic potential than the three Oenococcus bins, especially with regard to amino
acid metabolism, PTS and sulfur relay system KEGG pathways (Figure 3.6 A). Using metagenomic
assembly annotations the coverage of Lactobacilli PTS stood out when L. plantarum was present in
the fermentations. (Figure 3.6 B top). The same effect was observed for genes mapped to amino acid
metabolism. Moreover, in addition to Saccharomyces, Pantoea, Komagataeibacter, Gluconobacter, Er-
winia and Asaia were found to be in the top ten genera with high coverage of amino acid metabolism
(Figure 3.6 B bottom). Interestingly, Boruta feature selection analysis assigns the latter five genera as
discriminative for Airen against Bobal and Tempranillo (Figure A.22).

3.4 Discussion

The examples demonstrating computational analysis on functional and metabolic level show that it is
possible to characterize organisms or samples based on KO annotation of genomes, and that hypotheses
concerning the physiology and roles of organisms can be derived. This approach is especially use-
ful when studying complex communities. It aims at grouping and contrasting of species by a global
comparison of functions. It thereby provides evidence for groups of organisms that might play similar
roles, or points to their differences and putative specific roles that they might play in a community. Our
computational pipeline can be used in several ways in the research of microbial communities.
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Figure 3.5: Metagenomics samples of wine fermentation grouped with high resolution using annotated
metagenomes.
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Figure 3.6: Pathway enrichment reveals differences between the major malolactic fermentors.
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When genome sequences of individual community members are available, they can be easily char-
acterized in terms of their functional potential. This is particularly relevant for communities that are not
well described. As an example, the Acetobacter species stood out among the kefir isolates by the fact
that they possess structural genes for the assembly of flagella, as well as a chemotaxis signaling system
possibly involved in oxygen sensing Figure 3.3. Since their motility was confirmed experimentally,
these observations suggest an important role for chemotaxis of this species in kefir. Indeed, Acetobac-
ter is mostly present in kefir milk, and less in the semi-solid grains, which is in accordance with this
hypothesis [253].

Another important observation was that L. kefiranofaciens, a dominant organism in kefir [239],
stands out among the Lactobacilli because of the absence of biosynthesis pathways for a number of
amino acids. This species will therefore most likely have several amino acid auxotrophies. Hence, the
organism will depend on free amino acids and peptides in milk, which can be present in fresh milk, are
released by extracellular enzymatic degradation of milk protein or are produced by other organisms.
Whichever way, these auxotrophies will play an important role in the ecology of kefir fermentation.

One should, however, keep in mind that the characterization only concerns genotypic potential.
Whether and under which conditions the same genotypic potential also results in identical phenotypes
will have to be examined in experiments. We anticipate that the absence of a pathway is more conclusive
than its presence as it is most likely context and media dependent whether genes of a pathway are
expressed. We strongly believe that this approach provides more insights than a clustering based on
gapfilled genome-scale stoichiometric models. To accurately close gaps in pathways one would have
to determine an organism-specific biomass composition and grow the individual species under several
different conditions to e.g. identify auxotrophies and carbon sources that can be utilized which is very
time and resource consuming. It is also very challenging from an experimental point of view as species
can be hard to cultivate in isolation. Alternatively, one could also automatically gapfill all the models
without experimental validation on a defined medium but then one might miss auxotrophies that can
lead to metabolic interactions and the added value of the gapfilling is more than questionable. The
presented method focuses only on the gene-associated reactions avoiding all unnecessary overhead and
a fast selection of interesting species that can then be examined further in experiments.

Computational analysis was further applied to metagenome data of wine fermentations to explore
the effect of the introduction of a L. plantarum strain on community composition and dynamics. Fur-
thermore, the dataset, although limited, also allowed an initial exploration of differences between com-
munities in red and white wine fermentations. Together with the functional annotation GhostKoala pro-
vides also taxonomic assignment on genus level, which allows not only the exploration of the functional
potential of the community, but also the straightforward investigation of genera abundances dynamics.

Therefore, we readily found evidence to support the hypothesis that successful inoculation of a new
species to a community was in the case of wine an effect firstly of medium composition, and may de-
termined by fermentation with skin or without skin. Nevertheless, the effect of microbial community
interactions such as competition or collaboration cannot be discarded. The experimental results sup-
ported this hypothesis (Appendix A.2.2). Studies on the closely related species Lactobacillus hilgardii
and Pediococcus pentosaceus indicated that phenolic compounds from grape skins could be involved
[254]. Therefore, the identification of the mechanism behind the inhibition by phenolic compounds as
well as the selection of strains resistant to these could play a key role for the usage of organism other
than O. oeni for MLF in red wines.
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The use of annotated metagenomes allowed a fast overview of the community abundance dynam-
ics, such as time-dependent abundance level per genera, presence of common genera in different mi-
crobiomes and identification of unique genera in the microbioomes of grape varieties. In addition, we
identified putative positive and negative correlations with L. plantarum, suggesting for example that
L. plantarum may inhibits growth of fungi Aspergillus and Sclerotinia), as has been observed before
[255, 256, 257].

By binning metagenomics data and using these to investigate KEGG pathway enrichment, we
showed that L. plantarum is highly enriched in PTS transport components compared to the other mi-
croorganisms in the wine communities. Only a few other metabolic conversions are exclusively found in
L. plantarum (Fructoselysine/Glucoselysine → Fructoselysine/Glucoselysine 6-phosphate, N-Acetyl-
galactosamine→ N-Acetyl-galactosamine 6-phosphate, Galactosamine→ Galactosamine 6-phosphate
(Figure A.23)). These unique properties could play a role in growth of the community.

The shannon index reveals substantial differences in microbial diversity between the white and the
two red varieties (Figure A.27). The relative abundance of S. cerevisiae reaches up to 90% in the red
wine fermentations whereas in the white wine fermentations it reaches up to 60%. Also, Pantoea,
Erwinia from Enterobacteriaceae family and Asaia, Gluconobacter and Komagataeibacter from Ace-
tobacteraceae family are exclusively found in the white wine fermentations. These genera are known to
be relevant for wine making [258],[259], in particular acetic acid bacteria for their capacity to oxidize
ethanol to acetic acid [260]. Yet, their potential function inside wine communities is not fully explored.
We have shown that these five genera have high coverage of metabolic pathways involved in amino
acid metabolism. Amino acids, together with ammonium salts, are major nitrogen sources present in
grapes, and are essential for microbial growth [261]. Moreover, the composition of amino acids seems
to influence wine aroma [262] [263]. Therefore, studies already examined the effect of microorgan-
sims on amino acid composition during AF (S. cerevisiae [264]) and MLF (O. oeni and L. plantarum
[265]). With this in mind, we suggest that the five genera mentioned above are candidates for future
investigation.

3.5 Materials and methods

3.5.1 DNA extraction and genome sequencing of kefir isolates

2 ml of the culture were pelleted at 15000 rpm in a table centrifuge. The pellet was suspended in 600
µl TES buffer (25mM Tris; 10mM EDTA; 50mM sucrose) containing 20 mg/ml lysozyme (Sigma-
Aldrich, cat# 62971) and incubated for 30 min at 37 ◦C. The samples were then crushed with 0.3 g
glass beads (Sigma-Aldrich, cat# G1277, 212-300 µm) at 4m/s for five times 20 seconds using the
FastPrep-24 instrument (MP Biomedicals). 150 µl 20% SDS was added and after 5 min incubation
at room temperature the tubes were centrifuged at maximum speed for 2 min. The supernatant was
digested with 10 µl proteinase K (20 mg/ml) for 30 min at 37 ◦C and proteins were precipitated with
200 µl potassium acetate (5 M) for 15 min on ice. The samples were then centrifuged for 15 min at
4 ◦C and the supernatant applied to phenol/chloroform extraction. DNA was precipitated by adding
two volumes of ice-cold isopropanol and 20 min incubation at -20 ◦C followed by washing with 70%
ethanol at 4 ◦C. DNA quality was checked on agarose gel.

Kefir species were identified by Sanger sequencing of the 16S/ITS (internal transcribed spacer)
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region, using the primers S-D-Bact-0515-a-S-16 (GTGCCAGCMGCNGCGG) and S-*-Univ-1392-a-
A-15 (ACGGGCGGTGTGTRC) [266]. Unique isolates were sequenced using the Illumina HiSeq 2000
platform at EMBL genomics core facility (Heidelberg, Germany) with 100 bp paried-end reads. The
A5-miseq pipeline was used for quality-based trimming and filtering, error correction and de novo
assembly [267]. The assembled genome was annotated using Prokka version 1.11 [268].

3.5.2 Sampling and sequencing of wine fermentations

Wine was sampled in the autumn of 2013 at Bodegas Purisima Concepcion (La Mancha, Spain) before
the fermentation (day 0), during fermentation (days 1,2,3,4,7,14) and at the end of the fermentation
(day 21). Samples of the white wine were taken from the top of the concrete tank by rapidly lowering
a 250 mL baby bottle (single use) to 1 m depth using a rope and slowly bring it to the top. The wine
was decanted to a 50 mL falcon tube and put directly in a -50 ◦C freezer. To avoid the grape skin cap
the red wine was sampled from the valve in the bottom after flushing the valve in order avoid obtaining
residue wine. This was also done after racking of the wine. Cautions where taken in order to minimize
contamination. Samples were handled wearing gloves and changed between replicates, aluminium foil
was applied on the work station and changed between replicates, and filter pipettes were used all the
time.

For DNA isolation, cells were pelleted from 50 mL of wine centrifuged at 4500 g for 10 minutes
and subsequently washed three times with 10 mL of 4 ◦C phosphate buffered saline (PBS). The pellet
was mixed with G2-DNA enhancer (Ampliqon, Odense, Denmark) in 2 ml tubes and incubated at RT
for 5 min. Subsequently, 1 mL of lysis buffer (20 mM Tris-HCl- pH 8.0, 2 mM EDTA and 40mg/ml
lysozyme) was added to the tube and incubated at 37 ◦C for one hour. An additional 1 mL of CTAB/PVP
lysis buffer (50) was added to the lysate and incubated at 65 ◦C for one hour. DNA was purified from
1 mL of lysate with an equal volume of phenol-chloroform-isoamyl alcohol mixture 49.5:49.5:1 and
the upper aqueous layer was further purified with a MinElute PCR Purification kit and the QIAvac 24
plus (Qiagen, Hilden, Germany), according to manufacturer’s instructions, and finally eluted in 100 ul
DNase-free water.

Prior to library building, genomic DNA was fragmented to an average length of 400 bp using
the Bioruptor XL (Diagenode, Inc.), with the profile of 20 cycles of 15 s of sonication and 90 s of
rest. Sheared DNA was converted to Illumina compatible libraries using NEBNext library kit E6070L
(New England Biolabs) and blunt-ended library adapters described by Meyer and Kircher (2010). The
libraries were amplified in 25-mL reactions, with each reaction containing 5 muL of template DNA,
2,5 U AccuPrime Pfx Supermix (Invitrogen, Carlsbad, CA), 1X Accuprime Pfx Supermix, 0.2 uM IS4
forward primer and 0.2 uM reverse primer with sample specific 6 bp index. The PCR conditions were
2 minutes at 95 ◦C to denature DNA and activate the polymerase, 11 cycles of 95 ◦C for 15 seconds,
60 ◦C annealing for 30 seconds, and 68 ◦C extension for 40 seconds, and a final extension of 68 ◦C
extension for 7 minutes

The quality and quantity of the libraries were measured using the high sensitivity DNA analysis
kit on the Bioanalyzer 2100 (Agilent technologies, Santa Clara, United States), and the libraries were
pooled at equimolar concentration. Sequencing was performed on the Illumina HiSeq 2500 in PE100
mode and MiSeq in 250PE mode following the manufacturer’s instructions.
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3.5.3 General workflow of functional computational analysis

The general workflow that we follow is illustrated in Figure 3.1. The starting point of the analysis is
gene annotation to determine orthologous genes [269] for which we use BlastKoala and GhostKoala
[270], through webservices provided by KEGG [271]. These webservices map genes to KEGG Or-
thologs (KO’s) that represent groups of orthologous genes which are linked to a molecular-level func-
tion. Based on their KO content, the organisms and samples can be clustered. This process yields
several groups of distinct characteristics that are determined using diverse data mining techniques and
mainly, but not exclusively, concern the metabolic potential. Finally, these characteristics enable the
formulation of specific hypotheses about the physiological properties of species and a community as a
whole in individual samples. Other methods for the analysis of genome information on the functional
level exist, such as MG-RAST [272] and Megan [273]. HUMAnN [274] was the first to incorporate mi-
crobial pathway abundances for metagenomic data. We choose to apply a custom pipeline to be generic
and allow high versatilely throughout the analysis. Moreover, the use of the published BlastKOALA and
GhostKOALA from KEGG [270] provides an up to date annotation with KEGG database. Alternative,
eggNOG [275] provide a strong framework for orthology annotation.

3.5.4 Metagenomic sequence prepossessing

Quality control and filtering was applied on all paired-read data using FastQC [193] before and after
the application of Trim Galore [194] and Cutadapt [276], tools for quality and adapter trimming. Sub-
sequently, the reconstruction of full-length small subunit (SSU rRNA) gene sequences was obtained
using EMIRGE [277] with the SILVA 123 SSURef Nr99 database [278]. A taxonomy was assigned
using SINA Alignment Service on the resulting SSUs [279]. The resulting SSU’s were clustered to
OTUs with 97% identity using UCLUST [182] and the estimates of relative taxon abundances pro-
vided by the program added and normalized accordingly. A chimera sequence check was performed
using UCHIME [280]. For both tools the qiime interface was used [100]. Afterwards, the OTUs were
arranged to a BIOM table with a custom R script [281], to allow further analysis.

3.5.5 Sequence binning

For each grape variety the metagenome shotgun samples were merged together to achieve deep cover-
age, and were assembled with the Iterative De Bruijn graph de novo Assembler for short reads sequenc-
ing data with highly Uneven sequencing Depth (IDBA-UD) [195]. The resulting contigs were binned
with Maxbin 2.0 [282, 283], which clusters the sequences into draft genomes (bins) using the tetranu-
cleotide frequencies and sequence coverage. For differential coverage, all the metagenome samples
belong to fermantaitons of the same grape variety were used. Furthermore, bin taxonomy assignments
were carried out following the multi-metagenome pipeline [284]. Maxbin calculates a quality of the
resulting bins, using occurrence of essential genes to calculate a completeness score for the entire bin.

3.5.6 Gene annotation

The gene annotation was carried out using BlastKoala and GhostKoala [270] using the databases,
"genus_prokaryotes" and "genus_prokaryotes" or "genus_prokaryotes plus family_eukaryotes" for the
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kefir isolates and the metagenomic samples, respectively. While protein fasta files can be directly sub-
mitted to BlastKoala when isolates are examined, a re-assembly with IDBA-UD was necessary before
submission of metagenome samples [195]. To predict the open reading frames (ORFs), we used prodi-
gal [201] with parameterization for metagenome data. The produced ORFs are then used as an input for
GhostKOALA, which provides the KO (KEGG Orthology) assignments. Also, the effect of different
sequencing depth on the number of predicted ORFs was investigated. (Figure A.13)

3.5.7 Calculation of feature matrices and clustering

Using the output from BlastKoala and GhostKoala, several feature matrices were calculated. In the case
of microbial isolates, a feature matrix K is constructed of dimensions n ×m where m is the number
of isolated species and n is the number of KO’s. The entries kij are 1 if the KO j is present in species i
and 0 otherwise. A r×m feature matrix P was calculated, whose r rows and m columns correspond to
KEGG pathway ID’s and isolated species, respectively. The entries pij thereby represent the number of
KO’s present in pathway i for species j. To account for the different pathways sizes, pij is normalized
with respect to the total number of KO’s present in pathway i.

For the analysis of the metagenomic data, a n×m feature matrix G was constructed by calculating
sequence abundance per KO and summing these per genus. The entries gij equal the number of se-
quence reads of the genus i present in sample j. To account for variability in sequence reads per sample
the entries gij were normalized with respect to the number of sequence reads per sample gj and mul-
tiplied by 1 million (gijgj × 106). We also took into account the inoculation of Lactobacillus plantarum
and further normalize all samples using the complement (1 − glactobacillus) of the Lactobacillus genus
abundance ( gij

1−glactobacillus )
Another feature matrix A was calculated in which entries aij equal the number of sequence reads

mapped to a KO-genus combination i present in sample j. This matrix yields a very large number of
features and, consequently, very detailed information.

Finally, a feature matrix PM is used to explore biological implications by mapping KO’s to KEGG
pathways. Similarly, m is the samples during the fermentations, on the other hand n now is the KEGG
pathway IDs tagged with genera. The entries pmij thereby represent the number of KO’s present in
pathway i in sample j. To account for the different pathways sizes, pmij was normalized with respect
to the number of KO’s per pathway i.

Clustering analysis is performed using affinity propagation, which is a graph based approach [199,
200]. Pearson correlation was frequently chosen as the final similarity measure and Bray-Curtis similar-
ity in few cases. A general work-flow to assess the most suitable number of clusters is started with high
exemplar preferences values, which led to a very large number of clusters. Application of agglomerative
clustering on the resulting affinity propagation clusters using the R-package apcluster [200], allowed
an inspection of the corresponding dendrogram (Figure A.6). Therefore, a cutoff manually decided and
affinity propagation rerun repeatedly to achieve the desirable number of clusters.

3.5.8 Feature selection

The R package Boruta [285] was used to obtain a reliable ranking of feature importance and to select
only discriminative features for different classification tasks. This algorithm is a wrapper around Ran-
dom Forest [286] that performs randomization tests. Features with confidence of importance above
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0.99 (the default value in Boruta) were treated as informative. Also the maximal number of importance
source runs was increased to 2000 and in some cases to 5000. As the input one of the 75 × z feature
matrices described above (where 75 corresponds to the number of samples) were used, with z varying
from around 1016 to 228.256 features depending on the matrix. For example, when summing up all
KO abundances per genus the resulting matrix is 75× 1016. On the other hand, when using KO-genus
combinations as features, the matrix extended to 75 × 228256 after filtering. For supervised machine
learning, apart from an input feature matrix X also a response vector Y is used. Here we used prior
knowledge of the samples and constructed a response vector based on red or white wine varieties (two
classes) or the individual grape varieties (three classes).

3.5.9 Computational Validation

Validation of KEGG functional annotation with MetaDraft

As only around 50% of the genes can be mapped to KO’s (Table A.9) when analyzing kefir isolates, it
is unclear how much information will be lost by mapping compared to just using all genetic informa-
tion. We therefore created template models for selected KEGG pathways and then used MetaDraft to
determine genes that are present in an organism. For a given pathway, all reactions were retrieved along
with their corresponding genes that are found in organisms belonging to the phylum Firmicutes using
the Python package BioServices [208]. Within MetaDraft, the AutoGraph method [287] is used, which
is a sequence based orthology approach, independent of functional annotation. It is therefore suitable
to serve as an independent method to validate the results obtained using KO’s.

Validation computational findings in metagenomics

In metagenomics, a computational validation perform using 16S-rRNA reconstruction and binning,
which aims to reach the species level of taxonomy. Therefore, it provides extra confidence for the hy-
pothesis generated with the basic computational pipeline on genus level. Moreover, an extra computa-
tional validation performed on the concluding results from pathways enrichment analysis on LAB com-
parison. By removing all close identical sequences (below 99% amino acid similarity) from metagenome
samples of reconstructed bins and complete isolate genomes of interest (L. plantarum), for example po-
tential exclusive contribution of the high PTS of L. plantarum can be determined. Therefore, prediction
of an accurate shift of functional potential of the community induced by a single species can be identi-
fied.

3.5.10 Assessing motility of Acetobacter

Motility of Acetobacter was tested on MRS/whey agar (26g MRS broth from OXOID, 16g agar, 500ml
water and 500ml kefir whey, 48 hours fermentation). The plates were incubated for 3 to 4 days at 30 ◦C.
Motility was regarded as positive when the cultures spread into the agar and around the spotted colony.
Growth only at the spotted area was rated negative. Motility was observed after already 1 day for all
four Acetobacter isolates. Growth on YPDA for up to 4 days at 30 ◦C revealed no motility.
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Chapter 4

Using functional annotations to study
pairwise interactions in urinary tract
infection community1

4.1 Abstract

The behaviour of microbial communities depends on environmental factors and on the interactions of
its individuals. This is also the case of urinary tract infection (UTI), where an analysis of the inter-
play between community members is essential for developing better treatments. Here, we devise a
computational approach that uses indices of complementarity and competition based on metabolic gene
annotation to rapidly predict putative interactions between pair of organisms with the aim to explain
pairwise growth effects. We apply our method to 66 genomes selected from online databases, which
belong to 6 genera representing a UTI community. This resulted in a selection of metabolic pathways
with high correlation for each pairwise combination between a complementarity index and the experi-
mentally derived growth data. Overall our results indicated that enterococci was complemented in its
metabolism by the other members of the UTI community. After inspection of 12 relevant metabolic
pathways we propose that the metabolism of enterococci may be complemented with many metabolites
by the other members of the community.

1In collaboration with Elena GARCÍA LARA, M.G.J. de Vos and Douwe Molenaar
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4.2 Introduction

The microbiota of our body have a significant impact on our health. Disequilibrium in these microbial
communities may lead to diseases [288]. Moreover, the efficiency of antibiotic treatments could be
altered by the interactions between the members of a microbial community [88]. The interactions
between the microbes in a community may come in many forms, including exchange of compounds,
resource competition, horizontal gene transfer or even co-evolution [289]. Ultimately, interactions may
result in a positive, negative or neutral effect on growth and fitness. Metabolic interactions can cause
different effects, including synergy in growth due to complementarity of a pathway (e.g. biosynthesis
of essential compounds such as amino acids, nucleotides or vitamins), competition for carbon sources,
inhibition of the growth of others (e.g. by acids and alcohols as by-products of glycolysis), killing by
toxins or cooperative behaviour induced by quorum sensing (e.g. auto-inducers that promote symbiosis)
[227].

The urinary tract has historically been considered sterile. However, it has been shown that there are
urinary tract communities, and that they have an effect in the normal functionality of the organs [290].
One common outcome of abnormalities in the urine microbiota is UTI. It affects 150 million people
each year worldwide [291], and according to the World Health Organization: "an estimated 50% of
women report having had a UTI at some point in their lives." UTI is a broad term that refers to multiple
infections, ranging from asymptomatic bacteriuria to uncomplicated and complicated UTI [290]. The
microbial composition varies from healthy communities to the different types of UTI. The most present
organism in UTI context is Escherichia coli (E. coli); other common species include Klebsiella pneu-
moniae (K. pneumoniae), Staphylococcus spp., Enterococcus spp., Proteus spp., Pseudomonas spp.
and, in the case of complicated UTI, Candida spp. [290, 292]. All types, though, have in common that
it often commences by contamination of the periurethral area, and a later ascension towards the urethra
and the bladder. Adherence of the microbes influences the continuity of the infection; protease and
toxin release enhances the infection providing nutrients in a nutrient limited environment.

Several tools from systems biology have been used to study microbial interactions, and they focus
on the analysis of material and energy flow through metabolic networks [293]. Genome-scale stoi-
chiometric models have been used to study single organisms and simple communities to high levels
of detail [294, 93]. However, model reconstruction and manual curation are still a time-consuming
process. Simpler and more coarse-grained models were proven to be useful, as they have less uncer-
tainty (due to missing information) and are more readily to be applied [295] [93]. For the latter, one
may rely on functional annotations predicted from genomic data. These annotation elements (e.g. from
KEGG [296], MetaCyc [297], TheSEED [298] or EggNOG [299] databases) are a proxy of the putative
metabolic capacities of an organism. In particular, KEGG Orthologs [296] are groups of ortholog genes
[269] that share a similar function. The functional annotation of new genomes is derived from orthology
prediction, which compares the sequences available in the database with the genome to be annotated.
From these annotations, one could locate a reconstruction of the whole metabolic network to find the
’seed set’ [300], namely the set of compounds that an organism needs to acquire from the exterior in
order to synthesize the rest of compounds of the network. The ’seed set’ is calculated based on the
metabolic topology composed by KEGG elements. Subsequently, network topology and graph theory
can be used to compare the seed sets between pairs of organisms to compute interaction indexes such as
Biosynthetic Support Score (NetCooperate [301]), Complementarity or Competition (RevEcoR [302]).
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Alternatively, it is possible to unveil properties of the system without inferring the whole metabolic
network by comparing patterns in the KEGG Ortholog (KO) content of the organisms within a commu-
nity (such as wine or kefir bacteria). Such methods make use of the classification of KO’s in pathways
in the KEGG database, and they apply clustering to find patterns that can be later be corroborated by
experimental validations [303].

In this project, the aim was to continue the study of pairwise interactions of the bacteria involved
in UTI [88], by asking whether it was possible to find a relation between the metabolic characteristics
inferred from the genome and observed interactions between bacteria. For that purpose, we used a pure
data-driven approach to find putative metabolic interactions using genomic information and functional
annotation of genes. We collected 66 genomes from online databases of representatives of a UTI com-
munity. Then, we devised four complementarity and four competition indices for each pair of genomes
based on the KO’s for each KEGG pathway. Those indices were compared using the correlation with
the growth variance from pairwise experiments [88]. The chosen complementarity measure was further
used to select the most informative pathways, which may explain the positive growth synergies or not
between pairs of strains. Overall, the results led to the hypothesis that members of a UTI community
could provide intermediates of specific metabolic pathways to enterococci.

4.3 Results

4.3.1 Complementarity indices show the greatest correlation with the pairwise interac-
tion growth yields

The starting point was finding genomes representative of the species present in the UTI communities
as observed in [88]. Blasting the 16S sequences from the UTI isolates against global databases did
not yield specific matches, as they could not distinguish beyond species level of taxonomy. Thus, the
strains were manually picked from the NCBI database based on their origin of isolation, by order, from
urine or UTI, human, or an animal, shown in Table A.10. The 66 selected genomes were divided into
six groups. Each group corresponded to the genera of the isolate, with the exception of Klebsiella
spp., Enterobacter cloacae, Citrobacter koseri, Serratia liquefaciens, and Pantoea spp. which were
grouped altogether (KECS group). For all genomes the open reading frames (ORFs) were predicted
and the corresponded amino acid sequences were annotated as KO’s using BlastKoala. The mean
annotation ratio of KOs in comparison with the gene sequences was of 60.6% (st.dev 9.1%). This
number was similar for all species, although the total number of functional annotations varied depending
on the genera. The KECS group (Table A.10) had twice as many functional annotations compared to
enterococci and staphylococci. With the resulting KO vectors of each strain, we built a binary matrix
B. This representation helps visualizing how the KO are conserved within genera (Figure 4.1), i.e. the
KO’s that are shared between species of a genus. The low number of annotations in enterococci is also
evident in the Figure 4.1.

From the KO vectors we created interaction matrices, C, based on complementarity or competition
indices (Table 4.4, Table 4.5). The values for each cell (cd,a) correspond to the calculated index between
donor species d and acceptor strain a. The heatmap in Figure 4.3 (bottom left) represents the different
strains, grouped by genera, which adopt the role of donors and that of acceptors in the y- and x- axis
respectively. A darker shade of black in cells is associated with a higher value of the complementarity
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Figure 4.1: Matrix depicting the annotated KO’s presence or absence in the community.

The genera (rows) are ordered from the bottom upwards as Enterococus, Staphylococcus, Pseu-
domonas, P. mirabilis, KECS and E. coli. The KO’s cluster by genera, showing blocks of conserved
functions, but have no additional order. The pattern of KO’s presence is characteristic for each genera,
although E. coli and KECS share a great number of annotations, as well as staphylococci and entero-
cocci do.

index. The computed measure is able to group the strains by their genera. These matrices had the
same dimensions as the relative growth matrix as constructed in the growth variance experiments from
[88] (reconstructed in Figure 4.7), which allowed to calculate the correlation between the interaction
measures and growth (Figure 4.2).

The measures show a general behaviour across the pathways in their correlation with growth. The
complementarity measures had a positive correlation with growth yield. In particular, complementarity
3 ((D ∪ A − D ∩ A)/A) showed the largest mean correlation (ρ =0.33) with growth yield. Thus, it
was chosen for the subsequent analyses. A similar measure, complementarity 2 ((D ∪ A)/A), had a
similar mean correlation (ρ =0.32). Besides, the p-values obtained from a permutation test were lower
in the cases where the correlation was higher. Competition measures, such as competition 1 (D ∩ A)
showed a negative correlation of up to -0.20. However the p-value was not low enough to indicate
that the index was informative. Besides, no pattern was seen when comparing the interaction indices,
both complementation and competition, to growth rate (Figure 4.2). The values for correlation between
the interaction indices and the growth rate variation were low, with a maximum absolute value of 0.19
(competition 2). Nonetheless, the p-values were too large to hold onto these indices.

4.3.2 Analysis of genomes in terms of KEGG pathways

In our analysis we chose to use the KEGG pathway segmentation because it is the best curated as
well as an intuitive way to break down the entire KO vector. However, one could construct similar
interaction matrices without splitting the KO vector. When doing this, the relationship between the
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Figure 4.2: Correlation and corresponding p-values of different interaction measures.

Correlation (left) and corresponding p-values (right) of different interaction measures with the values
in the growth yield (up) and rate (bottom) pairwise matrices. Each row in the heatmaps represents a
pathway; they are located in the same order. The measures complementarity 2 and complementarity 3
show the highest correlation, with a low p-value, for the data in growth yield. No measure correlates
with the growth rate data.
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interaction measure and growth data in the organisms is lower in comparison to segmenting the KO
vector by KEGG pathways (KO vectors correlation: ρ 0.47, p-val 0.003, KEGG pathway segmanta-
tion: 0.62 (pval <0.001)) (Figure 4.3). Moreover, using an alternative segmentation, namely BRITE
hierarchy, the correlation is intermediate (correlation: 0.57 (p-value <0.001) for Energy metabolism).
On the other hand, another segmentation, namely modules, also under-performs (e.g. Glutathione
metabolism, Phenylalanine metabolism, ’Tyrosine metabolism’ with 0.62, 0.62,0.57 values of corre-
lation (p − values =< 2.5x10 − 4), when their best scoring module correlations (and p-values) are
0.27 (0.1), 0.34 (0.03), 0.10 (0.5)). Therefore, we concluded that the pathway segmentation of the KO
sets was the most informative choice in this context.

Figure 4.3: Interaction matrices representing the computed complementarity 3 for all the pairs.

From left to right, starting from the upper row, the KO’s selected for the calculate correspond to their
complete set of KO’s (ρ = 0.47, p = 0.003), as well as those KO’s belonging to BRITE, metabolism
of other amino acids (ρ = 0.49, p < 0.001), the pathway Glutathione metabolism (ρ = 0.62, p <
0.001), and the highest correlated module (with the experimental data) from this pathway (ρ = 0.28,
p = 0.056). The interaction matrix is plotted as a heatmap. The pattern is more informative when
splitting the KO’s at the pathway level.

Next, we sought to identify the pathways for which the relationship between the interaction indices
and the growth yield was most prominent. Subsequently, we ranked the most informative pathways
using an ensemble of Boruta feature selection, Support Vector Machine and the Mann–Whitney U test
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(MWU). Two-classes were used as targets for each method, with one representing the positive growth
effect of the pairwise interactions (ε>0.22, Table 4.3) and the other the neutral or negative growth effect.
The final selection was voted by all three methods by summing the pathway ranks of their individual
result. The top ranked pathways are reported in Table 4.1.

Table 4.1: Table depicting the most informative KEGG pathways in respect to the correlation between
their complementarity index and the experimental data.

Pathway name as in KEGG

Glutathione metabolism (Figure 4.4) Glycine, serine and threonine metabolism
Biofilm formation (E. coli) Phenylalanine metabolism
Carbon fixation in photosynthetic organisms Tyrosine metabolism
Fatty acid metabolism Biofilm formation (P. aeruginosa)
Arginine biosynthesis Sulfur metabolism
Porphyrin and chlorophyll metabolism Nitrogen metabolism
Biosynthesis of terpenoids and steroids One carbon pool by folate
2-oxocarboxylic acid metabolism Propanoate metabolism
Two-component system Fatty acid biosynthesis
Alanine, aspartate and glutamate metabolism Histidine metabolism

4.3.3 Enterococci are metabolically complemented by the UTI community

The interaction indices differ by genus. In particular, Enterococcus as acceptor has a unique behaviour.
In the pairs where enterococci acts as an acceptor, the value of the complemnetarity index is higher
than for other genera of the UTI community, which corresponds as well as with the pairs where growth
shows a higher positive change. We mapped the KO’s into the KEGG pathway maps to study in more
detail the different availability of orthologs in the six genera. In accordance with the highest com-
plementarity for enterococci, the images of the selected pathways (Table 4.1) showed that enterococci
lacked the orthologs that were present in the other genera. For example in histidine metabolism, the
functions that lead to histidine synthesis are present in most of the strains of E. coli but in almost none
of the enterococci (Figure 4.5). A selected number of possible exchanged compounds is described in
Table 4.2, based on the interpretation of the top 20 ranked pathways. An Enterococcus genome isolated
and sequenced from the original UTI study revealed the same patterns of complementarty as the public
available Enterococcus genome strains.

4.3.4 Alternative approaches fail to discover relevant patterns

We further compared our approach to create informative interaction indices with two previous published
tools: RevEcoR and NetCooperate. Both are based in constructing the ’seed set’ from the KO lists of
each strain and use the network topology to compute the Complementarity or Competition (RevEcoR
[302]) or the Biosynthetic Support Score (NetCooperate [301]). Unfortunately, by using these indices
we did not found a pattern to be shared with the data of growth yield or rate that we could further
explore (Figure A.30).
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Figure 4.4: Interaction values for UTI pairs.

In the left, matrix representing the outcome of estimated pairwise interactions, in terms of complemen-
tarity 3, for the Glutathione metabolism pathway. The measure is calculated as (A ∪D − A ∩D)/A,
where A depicts the acceptors (columns) and D, the donors (rows). The genera are ordered symmet-
rically as Ent, St, Ps, Pm, KECS and Ecoli. The diagonal bottom-left to top-right represents self-
complementarity. The complementarity cluster together by the genera groups created. Most of Ente-
rococcus spp. find high values of complementarity when playing the role of acceptor. The rest of the
situations show low interaction. In the right, the same interaction values are grouped by the mean of
the genera. Each points represents the donor with a different shape, and the acceptor with a color. The
complementarity 3 index (x-axis) is plotted against the experimental growth information (y-axis). Note
that MM was omitted from the analysis community. Two groups can be differentiated, Enterococcus as
acceptor found with high complementarity and higher ε, and the rest. The self-self interactions are also
plotted, and they differ from zero.
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Table 4.2: Compounds proposed to be complemented in Enterococci by other UTI species.

Compound Biological relevance
Fumarate Two ways to produce fumarate: from L-Aspartate (2) and from citruline (3), are not present in Entero-

cocci and Staphylococci, but are in the others.
Sulfide Sulfide can be formed from extracellular sulfate by many forms. Ent and Ecoli don’t have the necessary

orthologs, but they are able to convert this sulfide in Acetate and L-Cysteine (4). Cysteine is an amino
acid, which has antioxidant activity [304].

Histidine, Glutamate
and Serine

Not directly synthesized in Enterococcus (5, 5, 6 respectively).

Glycine Biosynthesis orthologs are missing in E. coli and Enterococcus (6). Cys, Gly, Glu conform glutathione.
An enrichment of the medium by this amino acids or tricarboxylic acid cycle intermediates could be
stimulating for increase of growth [305].

Iron uptake Iron is vital, but not abundant in UTI [290]. Pathways leading to the synthesis of heme groups or
porphyrines are present in all the genera in consideration, except Enterococcus.

Heme groups and por-
phyrines

Synthesis pathways are present in all the genera, except Enterococcus (7). Growing Enterococcus in
presence of heme increments growth [306].

Vitamin B12 Has the orthologs to be produced in KECS and Ps only (7).
Folate (DHF) and
derivates (10formyl
THF)

Routes available for production of folate (DHF) and derivates (10formylTHF) were missing in Ente-
rococcus but not in the other genera. (8 (folate) and 9 (derivates)). Folate is an essential cofactor for
nucleotide and amino acid biosynthesis. This makes folate a candidate for the hypothesis of comple-
mentarity. Besides, in mammalian cells there are folate transporters, however, in most bacteria those
transporters do not exist and they need to synthesize their own folate, which make the biosynthesis of
folate a target for antibiotics. However, some strains of Enterococci are able to uptake exogenous folate
[307, 308], which would exclude them for the antibiotic target.

Siderophores Produced by Ecoli, KECS, Ps (10). Different siderophores are produced by Ecoli, KECS, Ps. The
siderophores are necessary signaling compounds for growth and iron uptake, which can also be used by
non-siderophore-producing bacteria, under iron-limited conditions [309].

The KEGG pathway images referenced in the text are (1) Tyrosine metabolism, (2) Alanine, aspartate
and glutamate metabolism, (3) Arginine biosynthesis, (4) Sulfur metabolism, (5) Histidine metabolism,
(6) Glycine, serine and threonine metabolism, (7) Porphyrin and chlorophyll metabolism, (8) Folate
biosynthesis, (9) One carbon pool by folate, (10) Biosynthesis of siderophore group nonribosomal
peptides, (11) Phenylalanine, tyrosine and tryptophan biosynthesis and (12) ABC transporters.
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Figure 4.5: KEGG map of the pathway histidine metabolism.

Each KEGG Ortholog is reprented by a rectangle, coloured inside by a bar plot of KO presence in the
UTI genera Ent, Ecoli, KECS, Pm, Ps and St. In this example, coherently with the high complemen-
tarity value of enterococci, all the genera share a pathway towards biosynthesis of histidine, except for
enterococci.
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4.3.5 The co-occurrence based on microbial abundance from human gut does not reveal
complementary between pairs

The same interaction indices were compared against data related to co-occurrence, instead of growth
yield or rate. For this, we used a dataset composed of gut microbiota strains. The dataset contained
the 154 most prevalent species from 124 individuals following the work of [310]. We retrieved the KO
annotations from the IMG (Integrated Microbial Genomes) database. Then, the complementarity and
competition matrices were calculated. However, there was no correlation between any of the selected
indices and the co-occurrence data (Figure 4.6).

Figure 4.6: Correlation and corresponding p-values of different interaction measures with co-
occurrence

Correlation (left) and corresponding p-values (right) of different interaction measures with the values
in the co-occurrence data. Each row in the heatmaps represents a pathway. None of the indices shows
correlation with the co-occurrence data.
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4.4 Discussion

With the upswing of systems biology modeling and genomics techniques, we can get closer to unveiling
the black box that rules metabolic interactions. In this project, we have developed a rapid method
that helps finding relevant information in the pairwise interaction of UTI isolates without the need for
highly curated models. Since no genome sequences were available of the UTI isolates observed in
[88], we used genomes of similar organisms public available. Considering that the 16S gene sequences
are usually not specific enough to distinguish beyond species level, we have to accept an increased
probability of drawing false conclusions, i.e. not observing existing metabolic complementarity as well
as observing non-existing complementarity. Furthermore, interactions outside of the core metabolism,
like toxin synthesis or quorum sensing, are more likely to be missed since these vary more between
strains. In the future, a partial solution of the beyond species level quantification problem could be
given by the use of an alternative gene as molecular marker, such as rpoB, which reports promising
results [311, 312].

The functional annotations of a genome is essential, as in nature for example, the assembly of
communities depends on function of genes rather than genomic similarity [313]. In any step from the
genome to the functional annotations, information is expected to be lost. In our case we achieved an
average of 60% across the UTI selected genomes, while 70% is considered sufficient of the repertoire of
each cell [314]. Although this allowed us to continue, the usage of public available genomes imposes a
limitation to the study of UTI bacteria, in which a large part of the colonization of the urinary tract is due
to attachment of the bacteria to the epithelia [290]. Thus, some of the important infection mechanisms
of UTI remained outside of our scope. Additionally, functional metabolic pathways depend on the
encoded genes, as well as mRNA and protein fluctuations. Therefore, we believe the extension of our
approach by incorporation of transcriptomics and/or proteomics will achieve higher accuracy to predict
the putative interactions.

The use of KEGG annotation as a ’set of KO’s’ proved to be useful. We mapped the KO’s into
KEGG pathways to identify KO’s forming a coherent metabolic path. For future extension, graph
theory algorithms which take into account even more the topology in a metabolic network are promis-
ing approaches. Not surprisingly, they are already proposed and used in the analysis of communities
[315, 316]. The choice of using KEGG pathways to segment the whole genome came after evaluation
of different gene classifications. For instance, the division of the genome KO’s in pathways allowed
the discovery of relations in the data with higher resolution than when taking the whole set. Using the
BRITE hierarchy, which provides another level of functional organization than pathways, yielded an
intermediate performance. On the other hand, KEGG modules (the smallest segmentation) may not be
reliable due to their limited size. This suggests that the granularity of segmentation is important, espe-
cially when the whole metabolic network is used. The creation of interaction measures was based on
complementarity and competition. In general, complementarity had a positive correlation with growth
yield, whereas competitive interactions did not show any strong relation. The distance or similarity
measures have a great impact on the outcome of the relations between the variables and the response
[227]. In [317], an extensive comparison was made of different measures for community composition
that could be applied to microbial interactions. In UTI [88], as well as in other communities [87], it
is reported that negative interactions between organisms are over-represented. Based on the experi-
mental details, the growth yield of isolates grown on partially replenished conditioned medium was
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compared to the reference growth in the unconditioned medium [88]. This allowed to interpret differ-
ently the negative interactions as competition due to resource overlap (Nc < Nu(0.22 > ε > −0.22),
Table 4.3) or inhibition (Nc << Nuε < −0.51). Furthermore, positive interactions were also observed
and interpreted as cooperation [88].

In our case, the creation of a complementarity index was more straightforward than a competition
index. For the former, we could consider the increased metabolic capabilities that arise from an in-
teraction. On the other hand, the letter would require understanding which metabolic processes are
actually taking place. Therefore, it was more difficult to capture competition with the usage of genomic
information only. Investigation of direct inhibitory interactions, as opposed to negative interactions
by competition, was out of our scope. The data suggest that such interactions may form a large part,
namely 23%, of the total interactions [88] (Figure 4.7). Tools such as NetCmpt and NetCooperate pro-
vide scores for competition and cooperation and are based on KO annotations [318]. Both, however, did
not yield any correlation in our problem. In our analysis, out of eight measures, complementarity 3 was
chosen, because it shown the largest average correlation across the metabolic pathways. As expected, a
higher complementarity was linked to an increase of growth yield in the acceptor. This observation co-
incided with the dichotomy of Gram+ (Enterococcus spp. and Staphylococcus spp. strains) and Gram-
(the rest: E. coli, Klebsiella pneumoniae, Proteus spp., spp.) bacteria, where the former group expe-
rience more positive interactions in growth [88]. This group also had a smaller number of metabolic
genes, accompanied with higher complementarity values. The interaction indices were selected based
on a high correlation with growth yield. Therefore, the choice of interaction indices and selected path-
ways is tailored for the exploratory analysis of this UTI dataset. To create a general index, we would
need a larger data set of growth interactions. We used feature selection to identify the pathways for
which the relationship between the interaction indices and the growth yield was most prominent. To
improve the selection we applied an ensemble method of three different models. The resulting selection
of pathways was visually inspected using the pathway maps. This was possible because the size and
complexity of the UTI community was moderate.

The visualization of the KOs in the 20 selected pathways helped to investigate which metabolites in
enterococci might be provided by other members of the UTI community. In Table 4.2 the metabolites
that can not be synthesized in enteroccocci but could be synthesized by the other genera are described
(supplementary figures). Transporters of those metabolites were found in the enterococci strains (sup-
plementary figures). For that task we used the KEGG database to find the availability of the transporters,
although more detailed annotations may be obtained from other databases (e.g. TheSEED [298]) or by
employing specific tools (e.g. TransporterDB [319]). The hypothesized complementations may be
identified experimentally, by measuring the compounds in the exchanged medium, or by measuring
the growth of enterococci after addition of the compound to its medium. Furthermore, the hypothesis
can be tested on genome-scale metabolic models, such as the Enterococcus faecalis V583 model [305].
For instance, this shows that enterococci have a histidine auxotrophy. Interestingly, the upregulation
of sulfur, glutathione, and glycolytic metabolism (increasing metabolite precursors such as glycine and
glutamate), and increased fatty acid synthesis, pathways that appear with high complementarity towards
enterococci, are responses of Enterococcus faecalis to oxygen [304] -relevant in the UTI content, as it
causes oxidative stress [320].

The training set in this chapter is limited to a particular experiment on a UTI microbial commu-
nity. It would be of interest to train such a model for general purpose prediction of complementarity
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interactions. To do so a broader data set covering different microbial communities would be needed,
as well as standardized growth data for the members of these communities. To this end we attempted
to apply our approach on genomes originated from gut microbiome including information about their
co-occurrence patterns. However, we could not find any relation between their genome information and
co-occurrence. Co-occurrence differs from growth and may impair the performance of the interaction
indexes used here. The possibility that indices that correlate with co-occurrence may differ from the
ones that correlate with growth characteristics may also explain the low performance of the indices
from the RevEcoR and NetCooperate algorithms.

In the original pairwise interaction study [88] the most prominent difference between the growth
yield and growth rate matrices was a strong growth rate inhibition of Pseudomonas on the other genera.
The growth rate matrix did not show any relevant correlation with any of the measures, possibly due to
the strong effect of Pseudomonas inhibition, which could hide other interactions. Therefore, the original
study [88] and this one were focused in the growth yield matrix, which exhibited the most informative
patterns. However, a large part of the literature in microbial communities name growth rate as target
in their studies [310]. The relationship between growth rate and yield is still an open question [321],
therefore it would be insightful to study how both growth characteristics are affected by the interaction
between bacteria. On the other hand, in the gut dataset the associated outcome of the interaction was
co-occurrence scores. But how co-occurrence relates to complementarity or competition is subject to
debate. For example bacteria tend to co-occur with the ones with which they compete [310] as well
with the ones which they metabolically inter-depend [322]. Due to the nature of pairwise analysis, high
order interactions, i.e. those between more than two species, are not accounted for. Although this is
a limitation, pairwise studies may still be useful to understand the microbial activity and dynamics of
more complex communities [323]. Furthermore, host-microbe interactions may have a large influence
in the development of diseases such as bacteriuria and therefore be of interest for future exploration
[323, 324].

In this work, we studied the relation between genome-derived variables and the pairwise growth of
bacteria from the urinary tract infection. We aimed to explore to which extent the genomic information
was enough to gain insight in pairwise interactions. To this end new measures were created, based
on competition and complementarity mentioned in literature. This allowed us to study correlations
between those measures and pairwise growth effects. The complementarity measure with the largest
correlation was further used to select pathways of relevance using feature selection. The analysis of
these pathways made it possible to attribute a biological meaning. At the end, the pipeline, may lead
to testable hypothesis, such as enterococci being complemented by other members of the UTI commu-
nity, e.g. with histidine amino acid. Still, further research is necessary to understand a large part of
unexplored interactions that occur, especially the ones with negative nature. Finally, we believe that
future steps to identify interaction between members in microbial communities will open many new
possibilities such as further development of infection treatments.
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4.5 Materials and Methods

4.5.1 Growth yield and rate in UTI

The starting point of the project was data from pairwise combinations of bacteria in the UTI commu-
nity. In an effort to analyze the interplay between these species, [88] have quantified the interactions by
means of growth alteration. Briefly, 72 bacteria strains from 23 UTI patients were successfully isolated
and cultured in modified Artificial Urea Medium (AUM) [325] (unconditioned medium, Nu) for 48
hours. Afterwards, the supernatant from this cultures was used to supplement a second medium (con-
ditioned medium, Nc) for 24 hours. The difference of growth between conditioned and unconditioned
media was calculated as:

ε = ln(
Nc

Nu
)

The experimental procedure is explained in more detail in [88]. This analysis results in a pairwise
interaction matrix G (Figure 4.7), of size NxN , where N equals the number of strains isolated from
UTI patients (72). The donors are represented in the y-axis and the acceptors in the x-axis. The strains
are ordered by phylogeny; similar genera show similar behavior [88]. The conditioned medium was
partly mixed with AUM, so that the complemented medium (Nc) had between 0.6 - 1 times the original
concentration of nutrients, depending on the consumption of the donor. Together, this approach allows
to distinguish between different outcomes (Table 4.3). In the matrix, the strains are divided into six
genera2: Ecoli: E. coli; Ent: Enterococcus spp. (E. faecalis and E. faecium); KECS: Klebsiella spp.
(K. pneumoniae and K. oxytoca), Enterobacter cloacae, Citrobacter koseri, Serratia liquefaciens, and
Pantoea sp4; Pm: P. mirabilis; Mm: Morganella morganii; Ps: Pseudomonas spp. (P. aeruginosa and
P. fluorescens); St: Staphylococcus spp. (S. aureus, S. haemolyticus and S. capitis). The exact strains
present in the cultures above were not known, nor their genomic sequence. Nevertheless, the growth
increase or decrease is conserved within genera [88], fencing the interactions to the core functions, and
allowing us to create an approximate community to study.

Table 4.3: Possible outcomes of the interactions depending on the value of ε.

Outcome ε value

Positive effect on growth Nc > Nu(ε > ln(1.25) = 0.22)
Neutral effect on growth Nc ≈ Nu(ln(1.25) = 0.22 > ε > ln(0.8) = −0.22)
Negative effect on growth due to competitiveness Nc < Nu(ln(0.8) = −0.22 > ε > ln(0.6) = −0.51)
Negative effect on growth due to inhibition Nc << Nu(ε < ln(0.6) = −0.51)

4.5.2 Description of the dataset

We mimicked the experimental UTI community, using online available genomes. This in silico com-
munity consisted of the same species in a similar proportion. The genome dataset used in this project

2Note that genera in this case corresponds to a grouping based on phylogenetic relatedness but not always strictly taxo-
nomic genera.
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Figure 4.7: Matrix representing the outcome of pairwise interactions, in terms of growth yield
(MaxOD600) achieved by 72 UTI isolates, in medium conditioned by these same isolates.

The interaction index is ε = ln(Nc
Nu

). The acceptors (columns) were grown in medium conditioned by
the donors (rows). The interactions cluster together by phylogeny (16S phylogeny in [88], not shown
here). Isolates are order symmetrically, and named by their group, from left to right: Ent (Enterococcus
spp.), St (Staphylococcus spp.), Ps (Pseudomonas spp.), Pm (P. mirabilis), KECS (Klebsiella spp., E.
cloacae, C. koseri, S. liquefaciens, and Pantoea sp4), and Ecoli (E. coli). There is a M. morganii
isolate between Pseudomonas and P. mirabilis. The diagonal from left-bottom to right-up represents
self-interactions. Recreated based on [88].
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was retrieved from National Center for Biotechnology Information (NCBI) [326]. More specifically,
the strains were searched on the Prokaryote Genome database, which contains the genomes of 130.201
organisms, 127.870 of which are Bacteria, from 21 (23 considering unclassified) different Groups (as
of 30th January 2017). Only the sequences with level of assembly ’complete’ were chosen. When a
species presented more strains available than the number of species present in the experimental com-
munity, the strains related with UTI according to literature were preferred. Otherwise, human isolates
were chosen and, as a last resort, isolates from other sources. In Table A.10 there is a description
of the original species and the equivalent strains picked. The strains do not relate exactly with the
strains in the original growth matrix, so a one to one comparison was not possible. Thus, the strains
were grouped together as proposed in the experimental dataset. This caused that strains within one
group were indistinguishable. Overall, the distribution of groups looks like that of the original UTI
community (Figure 4.8). With the new in silico community, the analysis was performed following the
flowchart in Figure 4.9. The project was carried out for the most part in Python 2.7.12, using the Pandas
0.19.2 library [209], and R 3.2.3-4 (within the RStudio environment). The scripts were stored in GitLab
repository.

Figure 4.8: Composition of the UTI communities used for this work.

The community built from 72 isolates from 23 patients (left), and the mimicking in silico community
constructed from 66 related strains present in the NCBI database, include the same strains in a similar
proportion. E. coli is the most abundant species, as it is present in many UTI patients.

4.5.3 Selecting the strains using 16S sequences

The ribosomal 16S gene sequences were available for each of the isolates in the experimental commu-
nity. These sequences are usually employed to identify species by homology, because its sequence is
conserved through different bacteria genera. In this case, the aim of their analysis was to select more
accurately the genomes from the online databases. For this purpose, three different approaches were
done. The 16S sequences were blasted against GreenGenes [327], a global databases for sequences of
this kind. On the other hand, the global prokaryote database from NCBI [328] served as an alterna-
tive database. Furthermore, a local database containing the genomes of the strains already selected for
the in silico analysis, together with other strains belonging to the same species, was generated. The
expectation was to be able to identify the closest strain for the experimental isolates.
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Figure 4.9: General flowchart

We started with a dataset of 66 genomes from NCBI. From them, the KEGG Ortholog (KO) annotation
was retrieved from IMG database or using BlastKoala. The set of KO’s obtained was then split into
smaller units. We created variables related with microbial interactions that could be labeled as com-
petition and complementarity. We then selected those who presented higher correlation with an initial
pairwise interaction matrix that measured the effect in growth. The selected variables were used to
select pathways that contribute to this correlation, again using the growth data. Then, they were studied
visually using KEGG maps and hypothesis of interaction were created.

4.5.4 Functional annotation of the genomes

On one side, the genomes were downloaded from the GenBank database [329] using the Batch Entrez
system for a fast retrieval.The nucleotide sequences of the genomes were translated into amino acid
sequences using Prodigal [330]. Later on, BlastKoala [270] was used to find the KEGG Orthologs
associated with each of the organism sequences . The parameters were kept default, except taxonomy
group of genome: Bacteria and KEGG genes database: genus_prokaryotes. We made use of another
parallel annotation, downloaded directly from the Integrated Microbial Genomes database (IMG) [331]
(Figure 4.10). The final annotation for each strain had the form of a matrix with two columns: one
containing the K accession numbers of all the KO’s, and on the other a boolean value, 1 if the KO is
present, 0 if not. A binary matrix B, NxM , of N KO’s and M Bacteria strains was used from [303], to
have a visual representation of the KO content. Each entry bi,j represents the presence of KO i in the
strain j with a 1, or 0 otherwise.

4.5.5 Functional annotation division into smaller segments

The KO vectors were broken down, from one long list to smaller vectors that correspond to the KEGG
pathways. There are 520 pathways listed in the KEGG database, of which 274 had at least one KO
in one of the organisms. In order to link the KO’s to their respective pathways, the Representational
state transfer (REST)-style KEGG Application Programming Interface (API) was used. The link form
http://rest.kegg.jp/list/pathway allows to retrieve the complete list of KEGG pathways, whereas the form
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Figure 4.10: Comparison of the relative size of the genome and annotations per genera

(a) (b)

(a) Comparison of the relative size of the genome (genes) and annotations (KO terms) per genera. Each
of the bars depicts the relation between each genera’s number of genes (left) or annotations (right),
and the average for all genera. Interestingly, the difference in annotations for KECS is larger than the
difference for genes, with more annotations than average for KECS and less annotations for enterococci.
(b) Comparison of the number of annotations (KO terms) retrieved by two different approaches: NCBI
genomes annotated with BlastKoala, and KO’s directly downloaded from IMG. Overall retrieving the
KO’s using BlastKoala guarantees a higher coverage of the genome. KECS and Pseudomonas show
the largest variation in the size of their KO set: 121% KO ID’s obtained by the BlastKoala approach in
KECS versus IMG, and 133% of the KO ID’s in Pseudomonas.
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http://rest.kegg.jp/link/kos/mapxxxxx serves to associate the pathways and their KO’s. The ’mapxxxxx’
represents a KEGG pathway identifier. In a similar way, the KEGG database offers other entry points,
such as BRITE Hierarchy and Modules [270]. A segmentation of the initial vectors into modules
can be done similarly with http://rest.kegg.jp/list/module (retrieve all modules in KEGG database) and
http://rest.kegg.jp/link/kos/Mxxxxx (associate modules with their KO’s), where in this case ’Mxxxxx’
would be the KEGG module identifier. The third kind of partition chosen was one level above pathways,
based on BRITE Hierarchy (BRITE Hierarchy files > Genes and Proteins > Orthologs and modules >
KEGG Orthology (KO) - all categories (groups)). At the end of the Results section, a comparison
between the segmentation in Modules, Pathways, BRITE terms and the complete set of KO’s was done
by comparing their performance in finding a pattern.

4.5.6 Interaction matrices

The combination of the KO’s -boolean- vectors from the two organisms of the pair was done in the
form of asymmetric interaction matrices C, NxN . In them, N corresponds to the number of different
strains in the community. The values cd,a are the resulting of the comparison of two corresponding KO
vectors: of a donor d and an acceptor a. The interaction was interpreted as either complementarity or
competition. All the values were normalized by the total number of KO’s in the vector, to facilitate
the comparison between pathways (not stated explicitly below). Besides, in order to make indexes
asymmetric, many of them were divided by the number of KO’s in the acceptor (only if stated).

Complementarity

The complementarity indices were calculated based on the premise that metabolic functions present in
one genome and not in the other pair member, could lead to the donor to supply the lacking compounds
to the acceptor. This would be related with synergy, and would be expected to have a positive effect in
the growth on the acceptor. At first, any intermediate is equally likely to be ’complemented’. There are
different ways to compute complementarity (Table 4.4).

• Complementarity 1: directly as the fraction of the KO’s that are present in the donor set but not
in the acceptor.

• Complementarity 2: as the fraction of the total amount of KO’s that the acceptor could have when
complemented (by the donor) divided by the acceptor’s own possibilities.

• Complementarity 3: as Compl. 2, but without taking into consideration the shared KO’s (similar
to Hamming distance for boolean vectors, but divided by A instead of total number of dimensions
to make it an asymmetric index).

• Complementarity 4: same as Compl. 3, but divided by the putative total functionality. In this
way, it is equivalent to Hamming distance, but it is symmetric.
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Table 4.4: Complementarity indices. All of them normalized by pathway length. D is the number of
KO’s present in the donor d; A is the equivalent for the acceptor a.

Name Calculation

Complementarity 1 D - D∩A
Complementarity 2 (D∪A)/A
Complementarity 3 (D∪A-D∩A)/A
Complementarity 4 (D∪A – D∩A)/D∪A

Competition

The competition indices were thought as of similarity of the metabolic potential of the organisms in
a pair. The more similar, the highest similarity value and, a putative negative effect on growth. This
falls in the basis that the complemented medium in the pair was only partially restored when transferred
from the acceptor to the donor. Thus, a similarity in the compounds consumed by the former, would
limit the latter’s uptake.

The indices considered are as follow (Table 4.5):

• Competition 1 : directly the fraction of shared KO’s.

• Competition 2: equivalent to competition_1 but compared to the acceptor function to make it
asymmetric.

• Competition 3: equivalent to competition_2, but compared to the total possibilities.

• Competition 4: is just Pearson correlation (just to compare)

Table 4.5: Competition indices. All of them normalized by pathway length. D is the number of KO’s
present in the donor d; A is the equivalent for the acceptor a. Competition 1 is only written as the
intersection of two sets because stating a division by pathway length is omitted for all cases.

Name Calculation

Competition 1 D∩A
Competition 2 (D∩A)/A
Competition 3 (D∩A)/D∪A
Competition 4 Pearson correlation / A

Selection of interaction indices

We selected the interaction indices that matched the growth variations best, based on the correlation.
Firstly, we selected the 100 pathways with highest standard deviation with respect of pathway coverage
between genera, as considered putatively at least for start, the most informative. Secondly, Pearson
correlation was calculated for the index of each of these pathways and growth -either yield or growth-.
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The ’goodness’ of a index was tested by checking the correlation for each pathway interaction matrix
with the growth matrices. In order to compare two matrices, they were flattened into a 1D array. Finally,
a p-value was computed by permuting randomly the growth values, as in the equation that follows:

Pperm =

∑N
n |correlationrandomized| > |correlationoriginal|

Npermutations

where N corresponded with 1000 permutations. The indices with largest correlations were used for
further study.

Selection of informative pathways

There were 274 pathways present. We sought to identify those in which there were a clear separation
between high complementarity and increase of growth (ε > 0.22, Table 4.3), versus otherwise. In order
to filter the most informative pathways, we ranked the pathways depending on their performance in a
classification between those two groups. Because we had little data, we chose an ensemble of simple
models as they usually yield a performance as good as very complex models [332]. For this case, it
consisted of three methods: Boruta feature selection, as used in [303] with similar data, Support Vector
Machine (SVM) Recursive Feature Elimination (RFE) as it performs well in many types of data and
holds no assumptions [333] and a statistical Mann–Whitney U test (MWU) with which the selection is
independent of the model. Boruta [334] is an extension of Random Forest Machine Learning algorithm,
that uses this classification to iteratively discard features. A Z-score of an attribute can be calculated by
dividing the average accuracy loss for all the trees of a random forest by its standard deviation. In order
to set an statistical significance Boruta calculates shadow attributes for each feature. A paired t-test is
then calculated to interpret if the Z-score of the real attribute is higher than that of the maximum Z-
score among shadow attributes. We ranked the pathways by the computed importance itself. The SVM
algorithm classifies the points by representing them into space and creating a decision boundary that
separates the groups. The optimal decision boundary is the one that maximizes the minimum distance
from the separating decision boundary to the nearest points or support vectors. Each feature has a
weight on the decision vector. When applied RFE, the feature with smaller ranking criteria, based on
this weight, is removed iteratively [333]. Lastly, a model-free statistic method was selected. The MWU
test assumes as null hypothesis that the probability of picking a value from a group bigger than the
other group is equal. It is equivalent to a non-parametric t-test. The result is a statistic computed for
each pathway. The result was a ranking of the importance of the pathways, based on the MWU statistic,
SVM RFE’s score and Boruta’s importance. The ensemble was done by summing up the rank position
of each pathway. A stacking of base learners was avoided due to the small size of the dataset.

Visualization of the pathways

A script to automatically map the KO in each organism to a KEGG pathway map was developed using
the KEGG Markup Language (KGML) -a KEGG equivalent to Extensible Markup Language (XML)-
and the Python Imaging Library (PIL) [335]. At first, for each pathway, the KGML file was accessed
using a REST API command of the form http://rest.kegg.jp/get/eco00010/kgml. This type of files con-
tain information about the pathway itself, the compounds and KEGG Orthologs that it contains, their
relative location and how the elements are connected between each other and other pathways. From
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the KGML file, we could parse an image of the pathway. The image from KEGG pathways consists
of a diagram where compounds are represented with white circles, connected by arrows, on which the
corresponding KO’s are represented with rectangles. Each rectangle could be coloured or not depend-
ing on the presence of the specific KO in the organism. We used an extension of the original KEGG
images. Firstly, we collected a map of coordinates for all rectangles using the REST API. Then, we
coloured the rectangles dividing the area in vertical segments, where each of the bars corresponded to
a genera, and the height represented the percentage of strains of the genera that presented that KO.

4.5.7 Checking transporters availability

The biological possibility of the interactions between the pairs was checked by the presence of mem-
brane transporters in the annotations of the organisms. KEGG presents three types of pathways: ABC
transporters, Phosphotransferase system (PTS) and Bacterial secretion system.

4.5.8 Alternative approaches

In the project we compared the indexes above with two previous work tools that compute indexes
based on metabolic potential, and could be compared with the ’complementarity’ indices presented
above. NetCooperate [301] incorporates a Metabolic Complementarity Index (MCI) that shows a puta-
tive synergy between two organisms. More recently, RevEcoR [302] has come as a tool that calculates
Complementarity as "the fraction of compounds in species A’s seed set appearing in the metabolic net-
work, but not appearing in species B’s seed set", as well as Competition: "the fraction of compounds
in species A’s seed set that are also included in species B’s seed set". The seed set refers to the pre-
dicted minimum set of compounds required for the growth of an organism. These three indexes were
computed using the respective R packages, and the resulting matrix was analyzed similarly as the rest
of the indices. Moreover, we compared the interaction indices with co-occurance data. The dataset was
chosen following [310], who worked with microbial interactions and had already calculated the pair
co-occurrence of the species selected. The datasets contained the 154 most prevalent species from 124
individuals. The complementarity and competition matrices were calculated as mentioned through the
text.
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Chapter 5

A simple coloring method to distinguish
colonies of the yeasts Lachancea
thermotolerans and Saccharomyces
cerevisiae on agar media1

5.1 Abstract

The yeast Lachancea thermotolerans converts consumed sugar partly to lactic acid instead of ethanol
and is therefore used together with Saccharomyces cerevisiae to produce wines with a lower alcohol
content. Being able to distinguish these yeasts is important for quality control and quantitative assess-
ment of the contributions of both yeasts to wine fermentations. Commonly used methods to routinely
distinguish these organisms are indirect or rely on commercial products of undisclosed composition.
Here we describe that adding bromocresol purple to agar media induces Lachancea colonies to develop
a brown color, whereas Saccharomyces colonies remain white.

1In collaboration with Auke Haver, Marijke Wagner, Zakaria Kalmoua, Anna-Sophia Hellmuth and Douwe Molenaar
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5.2 Introduction

Lachancea thermotolerans can be routinely distinguished from Saccharomyces cerevisiae by using se-
lective media exploiting the property of Saccharomyces that it, in contrast to many other yeasts, can not
use lysine as a sole nitrogen source [336]. However, using this selective medium, the proportions of
Saccharomyces and Lachancea cells in mixed cultures can only be deduced by both counting colonies
on selective and non-selective media. Therefore, this method is inherently less accurate than a method in
which these yeast species can be distinguished on a single medium. In principle this is achieved by using
“Chromagar Candida” (CHROMagar, Paris). On this commercially available medium which contains a
chromogenic mix of undisclosed composition, colonies of both species are distinctly colored [336]. It
has, however, not yet been demonstrated that this method can be routinely used to quantify both species
in samples from mixed cultures.

In an attempt to find a simple way to distinguish these yeast colonies on a single plate we tried to
use a pH indicator, assuming that the production of lactic acid would lead to a low pH near Lachancea
colonies. However, also Saccharomyces colonies produce enough acid to decrease the pH, and usually
the entire plate shifts color from purple to yellow, also because the medium already has a low start-
ing pH. When incubating these plates for a few days, however, Lachancea colonies develop a brown
pigmentation, with increasing intensity from the edges to the center of the colony. In contrast, Saccha-
romyces colonies remain white, also after longer incubation (five days).

5.3 Results and Discussion

After three to five days of growth colonies of both yeasts are large and L. thermotolerans colonies
have a clear brown pigmentation (fig. 5.1) on medium with bromocresol purple. All L. thermotolerans
colonies develop the brown pigment, whereas all S. cerevisiae colonies remain white, as was checked
by plating the species separately (not shown). Bromocresol purple is usually applied in growth media
as a pH indicator. It has a pKa of 6.3 and changes color from purple to yellow when the pH drops from
6.8 to 5.2 [337]. Because of this property, bromocresol purple can be used to distinguish lactic acid
producing bacteria in mixed cultures [338]. However, plates with either yeast species turned entirely
yellow relatively soon, skipping a phase with distinct halos around colonies. Also, another commonly
used pH indicator, methyl red, did not yield distinct halos around colonies of either species.

The cause of the brown pigmentation of L. thermotolerans colonies is unknown. The localized
character of the staining, often more prominent in the center of the culture, suggests that the product that
causes the staining does not diffuse freely. Therefore, likely mechanisms are an intracellular chemical
conversion and containment or metachromasy, i.e. a colour change by binding specifically to a high
molecular weight component of Lachancea cells [339, 340].

The method proposed here was tested for different ratios of mixtures of the yeasts, ranging from
1:30–30:1 and yielded results that were in reasonable agreement with the theoretical values (fig. 5.2).
The maximal deviation out of 14 measurements was 2.7 fold from the theoretical value, and 9 out of
14 values deviated by less than 1.25-fold from the theoretical value. This demonstrates that this rapid
quantification method for mixed cultures with Lachancea is useful for practical purposes.
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Figure 5.1: Colonies of S. cerevisiae and L. thermotolerans are distinguishable by their color on YPD
plates containing bromocresol purple.

L. thermotolerans colonies develop a distict brown pigmentation, which is most intense at the center of
the colonies. The organisms were plated in a 1 to 1 ratio, and the L. thermotolerans strain used here
was NCYC 2433.
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Figure 5.2: Comparison of plated ratio of L. thermotolerans to S. cerevisiae and observed ratio of
colonies
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The gray line indicates the identical values of both variables and the bars indicate expected standard
deviations assuming a Poisson distribution of the error of colony counts. Both axes have a logarithmic
scale.
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5.4 Material and methods

5.4.1 Yeast strains

Lachances thermotolerans strains NCYC 2433 (type strain) and LT 37 (Chr. Hansen, Denmark) were
used.

5.4.2 Growth media

Synthetic grape juice medium (SGJM) consisted of D-glucose (110 g/l), D-fructose (110 g/l), L-tartaric
acid (6 g/l), L-malic acid (3 g/l), citric acid (0.5 g/l), Yeast Nitrogen Base without amino acids and
without ammonium sulfate (YNB, Sigma, 1.7 g/l), calcium chloride (0.2 g/l), casein hydrolysate (0.2
g/l), arginine monohydrochloride (0.8 g/l), L-proline (1 g/l), L-tryptophan (0.1 g/l) and inositol (0.8 g/l).
To produce the SGJM, three solutions (A, B and C) are made and mixed together, solution A consists
of D-glucose and D-fructose in 450 ml of demineralized water, solution B of L-tartaric acid, L-malic
acid and citric acid dissolved in 200 ml of demineralized water, and solution C of YNB, calcium chlo-
ride, casein hydrolysate, arginine monohydrochloride, L-proline, L-tryptophan and inositol dissolved
in 200 ml of demineralized water. After adding all solutions together, the pH was adjusted to 3.5, and
demineralized water was added to a final volume of 1 L. The medium was filter-sterilized.

Yeast extract Peptone Dextrose agar (YPD-agar) consisted of yeast extract (10 g/l), peptone (20 g/l)
and agar (15 g/l). When desired, 25 mg/l of bromocresol purple was added to this medium. The pH was
adjusted to between 6.8 and 7 using 7 M KOH, and the medium was sterilized by autoclaving, upon
which 40 ml of filter-sterilized glucose (550 g/l) was added.

Acknowledgements

We thank Laura Luzia for her significant contribution with discussions

Author contributions Statement

C.M. and D.M. conceived the methodology. A.H., Z.K and A.S.H performed the experimental work
supervised by M.W. and C.M.. D.M. and C.M. wrote the manuscript.

83 CHAPTER 5. A COLORING CO-CULTURE METHOD FOR WINE YEASTS



Chapter 6

A novel methanotrophic Mycobacterium
species as primary producer in a cave
borne microbial community1

6.1 Abstract

Mycobacteria are highly abundant in acidic biofilms thriving on the wall of Sulfur Cave in Romania.
Gas from ancient volcanic activities and consisting of primarily CO2, with traces of H2, H2S, and CH4,
invades the cave via small fractures in the bedrock on the floor, while atmospheric air floats above it.
This gas chemocline supplies the bacterial community with gaseous electron donors (H2, H2S, and CH4)
from below and O2, as electron acceptor, from above. Metagenomic and proteomic analyses on samples
of the biofilms showed that they contain a dominant new species of Mycobacterium that expresses a full
suite of enzymes required for methanotrophic growth, including a soluble methane monooxygenase for
the oxygenation of CH4 to CH3OH and a special ethanol dehydrogenase different from the canonical
MoxF-like methanol dehydrogenase to oxidize CH3OH into formaldehyde. Carbon is likely fixed via
the ribulose monophosphate pathway as judged by the fact that it makes the contributing key enzymes
at high levels along with those for the pentose phosphate pathway, gluconeogenesis, and the glyoxylate
shunt. Growth experiments confirmed that this new species can grow methanotrophically with CH4
as an energy source and that it incorporates carbon from labelled CH4. To our knowledge, this is the
first detailed description of a methanotrophic Mycobacterium of the Actinobacteria. We hypothesize
that it is the primary producer within this biofilm and that other members of the microbial community
consume its necromass.

1In collaboration with Rob van Spanning, Qingtian Guan, Lubos Polerecky, Jean-Francois Flot, Bernd W. Brandt, Joost
Aerts, Martin Braster, Paul Iturbe Espinoza, Marion Meima, Sander Piersma, Catalin Bunduc, Roy Ummels, Arnab Pain,
Raduvan Popu, Gherman Vasile, Serban M. Sarbu, Paul Bodelier and Wilbert Bitter
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6.2 Introduction

Microbial biofilms were discovered on the walls of Sulfur Cave located on Puturosu Mountain (Stinky
Mountain) in Romania, an area which still emits volcanic gas predominantly composed of CO2, and
traces of H2, H2S, and CH4 [341, 342, 343]. The volcanic gas forms a gas chemocline with atmospheric
air on top. The biofilms are located at the interface between the volcanic gas and the atmospheric air.
They are not exposed to light and not in contact with organic carbon and energy sources. In addition it
is devoid of a water source other than atmospheric water vapour. A special characteristic of the biofilms
are the very low pH of about 1, which most likely stems from the sulfuric acid resulting from the oxida-
tion of H2S. For centuries, the caves on Puturosu Mountain were a valuable source of sulfur and alum
for the local population [344]. In recent years, the entrance of Sulfur Cave has been used as medicinal
gas-bath for patients who suffer from cardiovascular ailments. Earlier studies showed that the biofilms
are composed of modest microbial communities with a few dominant species, including members of the
genus Acidithiobacillus, Ferroplasma, and Thermoplasma. The last 2 are Archaea, which are known
to thrive in extreme environments. However, the most dominant species is a member of the genus My-
cobacterium [345]. Mycobacteria have a special membrane consisting of mycolic acids that make the
cells more robust and protects them against environmental threats. The members of the genus seem to
diverge into 4 separate groups [346]. Some species, such as Mycobacterium tuberculosis and M. leprae
[347], are obligate and persistent pathogens, whereas others display a remarkable diversity in growth
environments and flexibility in metabolism [348, 349, 350]. Members of the genus were shown to use
a variety of carbon and energy sources like lipids, fatty acids, aliphatics and/or aromatic hydrocarbons.
Some of them can even grow on oil due to their genetic potential to synthesize different types of mono-
and dioxygenases [351]. The preferred electron acceptor of respiration is O2 in most of them, although
some species have the potential to express a nitrate reductase for an alternative mode of respiration us-
ing nitrate as terminal electron acceptor [352]. This work aimed at getting a fundamental understanding
of the metabolic properties of this Mycobacterium and to shed light on its interactions with the other
community members. For that, we used metagenomics and proteomics and identified key enzymes for
CH4 metabolism in this Mycobacterium to produce biomass that is probably central to some or all of the
other members of the cave community. Subsequent growth experiments of the isolated Mycobacterium
confirmed its potential to use CH4 as the sole source of energy whereas it incorporated carbon from
labelled CH4.

6.3 Results

6.3.1 Genomes and their proteins expressed in the biofilm

Previously, we described the 16S rDNA community profiles of the biofilms at different locations in the
cave, and they showed that they contained (at least) 3 different species of Mycobacterium, one of which
was dominant. To further elaborate on these results, we obtained new biofilm samples, isolated DNA
and performed metagenomic analyses. The overall DNA quantity was small and the quality not very
high, probably due to the special features of this biofilm, i.e. a very low pH and high concentration of
sulphur and minerals. Despite these limitations we were able to assemble draft genomes of the three
Mycobacterium species that we had identified from the community profiles. From this analysis, it was
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again clear that one Mycobacterium species was present in much higher relative amounts than the other
2. We used the same biofilm samples to isolate proteins, both soluble and insoluble, which are usually
embedded in the cell envelope. These protein samples were used for proteomics using the established
draft genomes to get an impression of how their genomic potential was expressed under these special
growth conditions. An overview of identified proteins that were most abundant is shown in Table 6.1.
This procedure helped us to establish the metabolic and respiratory make-up of the dominant species of
Mycobacterium, which we will discuss below item by item.

Table 6.1: List of abundant proteins of M. methanotrophicum.

Protein
Protein
IDs short

Peptides
count

Unique peptides
count

Percentage sequence
coverage

Mol. weight
[kDa]

average normalised
count pellet

sMMO subunit α Mmeth_04015 53 53 71,1 60,43 140,5
Alcohol dehydrogenase D Mmeth_02892 26 26 61,4 39,97 135,9
sMMO subunit β Mmeth_04010 28 28 82,3 21,35 101,9
sMMO subunit γ Mmeth_04014 25 25 57,5 44,79 88,2

GroEL
Mmeth_02899;
Mmeth_00728

44 23 55,5 56,96 86,0

Transketolase Mmeth_00187 35 26 56,5 75,58 48,2
Formate dehydrogenase Mmeth_01089 19 19 48,5 42,09 40,0
EF-Tu Mmeth_03490 20 4 57,1 43,68 37,8
α-crystallin Mmeth_03520 16 16 79 15,93 34,1
Sulfite reductase Mmeth_00631 31 31 48,4 62,40 27,3
Transaldolase Mmeth_00186 20 20 56,5 40,01 26,0
Pyruvate kinase Mmeth_00880 18 12 44,1 50,525 23,8
Hexulose-6-phosphate
synthetase

Mmeth_00838 9 9 60,4 20,89 22,6

GroES Mmeth_00273 19 14 30,1 56,13 22,0
DoxX family
membrane protein

Mmeth_04503 16 16 45,2 31,21 21,4

MftD Mmeth_02893 14 14 39,9 41,11 21,3
ATP synthase subunit α Mmeth_01783 21 15 35,6 59,21 21,0
Peroxidase Mmeth_03095 20 20 37,4 80,70 20,2
Fumarate reductase Mmeth_02646 23 23 40 69,98 20,0
sMMO Mmeth_04011 14 14 42,9 38,40 19,7
sMMO Mmeth_04013 9 9 48,4 17,50 19,6
Encapsulin Mmeth_01555 18 18 52,5 28,92 17,7
ATP synthase subunit β Mmeth_01785 14 5 36,2 52,93 16,9
Pyruvate dehydrogenase
subunit

Mmeth_04124 18 15 36,3 59,57 16,5

Glyceraldehyde 3-phosphate
dehydrogenase GAPDH

Mmeth_00172 13 9 47,6 35,86 16,0

6.3.2 Methane monooxygenase

Among the most abundant mycobacterial proteins in the biofilm are the α and β subunits of compo-
nent A of a diiron type soluble methane monooxygenase (sMMO) along with component C (methane
monoxygenase reductase, MMOR). The genes coding for these subunits are exclusively present in the
dominant mycobacterial species and not in the other two mycobacterial genomes. The genes encoding
sMMO are clustered in the draft genome (cluster 1, ORFs 4010-4015) (Table 6.6). ORFs 4015, 4014
and 4010 encode the α, β and γ subunits, respectively, of an about 250-kDa dinuclear iron-containing
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dimeric hydroxylase (MMOH). These hydroxylases catalyze O2-dependent oxidation-hydroxylation re-
actions within diiron centres. ORF 4011 encodes an about 40-kDa NADH-dependent [2Fe–2S]- and
FAD-containing reductase (MMOR), which probably serves to supply electrons from NADH to the
catalytic site in MMOH. ORF 4013 encodes a member of the MmoB/DmpM family of monooxyge-
nase regulating proteins. Its binding to MMOH is known to control the activity of the reductase and
stabilizes intermediates required for the activation of O2 [353]. Such a genetic make-up combined
with the proteomics data strongly suggests that this Mycobacterium is methanotrophic. Later on, we
will provide support for this hypothesis and for that reason, we will tentatively call it Mycobacterium
methanotrophicum (M. methanotrophicum). In close vicinity of the mmo genes is a gene encoding
phosphoenolpyruvate carboxykinase (ORF 4007), which may serve in gluconeogenesis. It catalyzes
the GTP-dependent conversion of oxaloacetate (OAA) to phosphoenolpyruvate (PEP), prior to the pro-
duction of glucose from precursors derived from the citric acid cycle [354].

6.3.3 Alcohol dehydrogenase

M. methanotrophicum has 6 genes encoding alcohol dehydrogenases (ORFs 144, 1439, 1448, 2231,
2904, and 2892). According to our semi-quantitative proteomic analysis, the most expressed one in
the biofilm samples is an alcohol dehydrogenase D (AdhD) expressed from ORF 2892. M. methan-
otrophicum does not have the potential to make a MoxF-type methanol dehydrogenase nor the abil-
ity to make PQQ as its cofactor. Instead, we believe that the highly expressed AdhD is responsi-
ble for the oxidation of CH3OH to formaldehyde. The closest homologue is an NDMA-dependent
alcohol dehydrogenase that belongs to zinc-binding class III-type alcohol dehydrogenases, including
S-(hydroxymethyl)glutathione dehydrogenase and NAD/mycothiol-dependent formaldehyde dehydro-
genase. The amino acid sequence shows the binding sites for zinc at position 60 (G-H-E-x-EL-G-AP-
x(4)-[GA]-x(2)-[IVSAC] where H is the zinc ligand. The AdhD enzymes have a C-terminal NAD(P)
binding Rossmann-fold domain and an N-terminal catalytic domain with distant homology to GroES
[355, 356, 357]. The enzyme acts on primary or secondary alcohols with very broad specificity, al-
though the enzyme oxidizes CH3OH not as efficient as ethanol [356]. It has been suggested that these
enzymes have a small protein mycofactocin as a possible cofactor precursor, and require a radical
SAM protein for maturation [358, 357, 359]. Their genes are adjacent to the adhD gene (cluster 2,
ORFs 2892-2896), suggestive for coordinated expression of all relevant enzymes to synthesize AdhD.
These so-called mftABCD genes form a widely distributed set of genes found in members of the genus
Mycobacterium that recruit the peptide-derived mycofactocin cofactor. The mftD gene (ORF 2893) en-
codes a haem-flavin dehydrogenase with an N-terminal haem-binding domain and C-terminal flavode-
hydrogenase domain. This oxidoreductase is also in the list of highly expressed proteins (Table 6.1).
Next in the cluster is ORF 2894 (mftC) which encodes a radical SAM protein. Enzymes of this fam-
ily generate radicals by electron transfer from a conserved 4Fe-4S cluster to S-adenosylmethionine
(SAM), which leads to its reductive cleavage to methionine and a 5’-deoxyadenosyl radical [360]. The
latter is likely required to mature the proposed cofactor termed mycofactocin and for that reason, it is
sometimes called mycofactocin radical SAM maturase, members of which are found in Mycobacterium
species and many other Actinobacteria. The precursor of mycofactocin along with its binding protein
are encoded by ORFs 2896 (mftA) and 2895 (mftB), respectively. The binding protein MftB is thought
to be a scaffolding protein during mycofactocin maturation. MftA proteins have a conserved C-terminal
sequence EE-XX-IDGXCGVY, which is also present in the copy of M. methanotrophicum. It has been
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proposed that the mature form of mycofactocin is a novel redox carrier of AdhD, which is similar in
function to PQQ in the MoxF-type methanol dehydrogenase [357, 359].

6.3.4 Formaldehyde and formate dehydrogenases

The next steps in the utilisation of methane would require a formaldehyde and a formate dehydro-
genase. A putative glutathione independent formaldehyde dehydrogenase (FyDH) encoded by ORF
4228 is produced at relatively high levels in the biofilm (Table 6.1). This enzyme would be able to
catalyzes the oxidation of formaldehyde into formate with the concomitant reduction of NAD+ [362].
The neighbouring genes do not seem to encode proteins related to this function. It seems to be a
unique gene within the genus Mycobacterium, not shared with other members (see also below). In ad-
dition, also an NAD+ dependent formate dehydrogenase (FDH) (ORF1089) is highly expressed. This
enzyme could catalyzes the oxidation of formate into CO2 with the concomitant reduction of NAD+
[363]. The gene is clustered (cluster 3, ORFs 1085-1090) with those encoding a biotin synthase, an
ATP dependent dethiobiotin synthetase, 8-amino-7-oxononanoate synthase, and adenosylmethionine-
8-amino-7-oxononanoate aminotransferase, all of which participate in biotin formation [364].

6.3.5 Ribulose monophosphate pathway for formaldehyde incorporation

Additionally abundant proteins in the proteomics list are hexulose-6-phosphate synthetase (H6PS, ORF
838), and 2 copies of 6-phosphogluconate dehydrogenase (6PGDH, ORFs 2182 and 2221). Both are
exclusive to M. methanotrophicum and not found in the other two mycobacteria present in the biofilm.
They are key enzymes of the ribulose monophosphate (RuMP) cycle of formaldehyde assimilation,
which was first described in Methylomonas methanica [365]. It requires 3 molecules of ribulose-5-
phosphate that combine with 3 molecules of formaldehyde through an aldol condensation, producing 3
molecules of 3-hexulose 6-phosphate. These are then converted into 3 molecules of fructose-6- phos-
phate, one of which is split into GAP and pyruvate. The latter is used for biomass formation, whereas
GAP and the other 2 fructose-6-P molecules are used to regenerate 3 molecules of ribulose-5-phosphate
[366, 367]. Further key enzymes of the cycle are, with abbreviation and ORF number in between brack-
ets, hexulose-6-phosphate isomerase (H6PI, ORF 837), glucose-6-phosphate isomerase (GPI, 2 copies,
ORFs 378 and 4307), glucose-6-phosphate dehydrogenase (G6PDH, 4 copies, ORFs 214, 636, 2183
and 4311). ORFs 837 and 838 encoding H6PI and H6PS, respectively, are in gene cluster 4. Genes
encoding additional copies of GPI, 6PGDH and G6PDH are clustered as well in cluster 5 (ORFs 4307,
4308 and 4311, respectively). ORFs 2182 and 2183 encoding 6PGDH and G6PDH, respectively, are
in gene cluster 7. A further description of clusters 4, 5 and 7 is in the parts on the pentose phosphate
pathway and glyoxylate shunt below.

6.3.6 Pentose-P-pathway and gluconeogenesis

Two other abundant proteins of interest are transaldolase and transketolase, encoded by ORFs 0186
and 0187, respectively, both of which are central in the pentose phosphate pathway (Figure 6.2).
This pathway connects central metabolism with the RuMP pathway to generate ribulose-5-P. More
upstream in this cluster 6 is a gene encoding 6-phosphogluconolactonase (6-PGL, ORF 0184). This
enzym is essential in the oxidative phase of the pentose-P pathway as it catalyzes the hydrolysis of
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Figure 6.1: Simplified molecular pathways of methane oxidation and ribulose monophosphate (RuMP)
cycle for M. methanotrophicum
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Key enzymes are presented in blue. Boxed enzymes are uniquely present in M. methanotrophicum and
not in the other 2 cave species. Dashed arrows represent lumped reactions for biosynthetic purposes
and regeneration of ribulose-5-P. Abbreviations: sMMO, soluble methane monooxygenase; nADH,
NDMA-dependent alcohol dehydrogenase; FyDH, formaldehyde dehydrogenase; FDH, formate de-
hydrogenase; H6PI, hexulose-6-phosphate isomerase; GPI, glucose phosphate isomerase; G6PDH,
glucose-6-phosphate dehydrogenase; 6PGDH, 6-phosphogluconate dehydrogenase; H6PS, hexulose-
6-phosphate synthetase; GAP, glyceraldehyde-3-P. The Figure is adapted from [361].
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6-phosphogluconolactone to 6-phosphogluconic acid. Interestingly, in close vicinity are the genes en-
coding three proteins involved in central metabolism, PEP carboxylase (ORF 0182), phosphoglycer-
ate kinase (ORF 0173), and glyceraldehyde-3-phosphate dehydrogenase (ORF 0172), all 3 of which
are also in the list of abundant proteins. A gene encoding triosephosphate isomerase (ORF 0174) is
adjacent to them. This last enzyme is key in glycolysis or gluconeogenesis since it reversibly inter-
converts dihydroxyacetone phosphate and D-glyceraldehyde 3-phosphate (G3P). Genes encoding GPI,
6PGDH and G6PDH (ORFs 4307, 4308 and 4311) of the RuMP pathway are in cluster 5 with a suite of
genes encoding enzymes of the pentose-P pathway and 1 gene for gluconeogenesis. The latter is ORF
4304 encoding fructose-bisphosphate aldolase. The enzyme reduces G3P and DHAP into fructose-1,6-
bisphosphate, hence in the opposite direction to what occurs during glycolysis. The genes for enzymes
in the pentose-P pathway are ORFs 4305 and 4306 encoding 2nd copies of transketolase and transal-
dolase, respectively. Further, ORF 4309 that encodes a 2nd 6-PGL and ORF 4310 a ribose-5-phosphate
isomerase (R5PI). The latter catalyzes the reversible isomerization of ribose-5-P (R5P) into ribulose-5-
P (Ru5P), which serves as formaldehyde acceptor in the RuMP pathway. Cluster 4 mentioned earlier
has 3 genes of the RuMP pathway encoding G6PDH, H6PI and H6PS, and 2 genes encoding a 3rd set of
transketolase and transaldolase (ORFs 843 and 844, respectively). Again, clustering of genes encoding
proteins both for the RuMP and pentose-P pathways. This cluster, however, seems to be less expressed
than the one that comprises ORFs 186 and 187 as none of the proteins is abundant. The cluster is
preceded by a 2nd gene encoding the regulatory protein MmoB of sMMO (ORF 831).

6.3.7 Glyoxylate cycle

Malate synthase encoded by ORF 2216 is also highly expressed. It is a key enzyme of the glyoxylate
cycle where it combines glyoxylate and acetyl-CoA to malate [368, 369]. The other key enzyme is
isocitrate lyase, encoded by ORF 4363, which splits isocitrate into glyoxylate and succinate [368]. The
other enzymes in the cycle are citrate synthase (from ORF 2002), aconitase (from ORF 3757), suc-
cinate dehydrogenase (from ORFs 503-506), fumarase (from ORF 2423), and malate dehydrogenase
(from ORF 1195). Malate dehydrogenase and citrate synthase are also ranked in the list of abundant
proteins. There are another 2 enzymes that are abundant and interfere with the intermediates of the
glyoxylate cycle. The 1st is a fumarate reductase (expressed from ORFs 2645-2646) to reduce fumarate
into succinate. The 2nd is a pyruvate kinase (from ORF 880) that phosphorylates pyruvate into PEP.
It also has the genetic potential to make i) NAD-dependent malic enzyme (ORF 3248), which is a
decarboxylating oxidoreductase that converts malate into pyruvate and CO2, ii) a malate quinone ox-
idoreductase (ORF 2556), and iii) a carboxylic acid reductase (ORF 3643), which reversibly reduces
a carboxylate to an aldehyde, has tungsten as a cofactor and participates in pyruvate metabolism. It
does not have an NAD+ dependent alpha-keto glutaric acid dehydrogenase. Rather it seems to produce
succinyl-CoA from alpha-keto glutaric acid with a ferredoxin dependent 2-oxoglutarate synthase, the
subunits of which encoded by ORFs 0970 and 0971. The gene encoding malate synthase is in cluster
7 along with those encoding 2nd copies of 6PGDH and G6PDH (ORFs 2182 and 2183, respectively),
adenylate cyclase (ORF 2184), the type 3 hydrogenase (ORFs 2205-2210), and a 3rd copy of 6PGDH
(ORF 2221), which is also one of the abundant proteins.
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Figure 6.2: KEGG map of the pentose phosphate pathway and its connections to other metabolic path-
ways

Pentose phosphate pathway

M. methanotrophicum 

M. MAG 2

M. MAG 3 

Function by MAGs

EC enzymes 5.3.1.27 (6-phospho-3-hexuloisomerase) and 4.1.2.43 (3-hexulose-6-phosphate synthase),
which are uniquely present in M. methanotrophicum and not in MAG 2 and 3 are marked with straight
circles. EC enzymes 1.1.99.3 and 2.7.1.15 (gluconate 2-dehydrogenase and ribokinase, respectively),
which are shared by MAG 2 and 3 and absent from M. methanotrophicum are marked with dotted
circles. Enzymes potentially encoded by the genes of M. methanotrophicum and MAG 2 and 3 are
coloured green, pink and blue, respectively.
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6.3.8 Respiration and ATP synthesis

Subunits of ATP synthase, which makes ATP from ADP and Pi at the expense of the membrane poten-
tial, are in the list of abundant proteins, emphasizing their importance in free energy metabolism of M.
methanotrophicum. Free energy in this context is the energy that is available to do work. Genes en-
coding the enzyme are clustered in cluster 8 (ORFs 1779-1786). The membrane potential is built up by
the respiratory enzymes that couple electron transfer to the movement of protons from the inside to the
outside of the membrane. These respiratory enzymes, with the ORFs encoding them in between brack-
ets, are a proton translocating NADH dehydrogenase (ORFs 2955-2968), the cytochrome bc1-complex
(ORFs 2856-2858), 4 copies of a gene encoding cytochrome c oxidase subunit I (ORFs 870, 1303, 1446,
and 3787), a cluster with genes encoding the remaining subunits of the oxidase (ORFs 2852-2859), and
a succinate dehydrogenase (ORFs 503-506). Notably, the genes encoding the cytochrome bc1-complex
are sandwiched between those encoding subunits of cytochrome c oxidase in gene cluster 9. This has
been noted in other mycobacteria as well, apparently to coregulate the expression of the subunits that
make up a super complex of the cytochrome bc1-complex and the aa3-type oxidase [370]. Apart from
the cytochrome c oxidase, it has the potential to make a bd-type quinol oxidase (from ORFs 885-887),
which has a high affinity for O2. It is therefore believed to be operational under conditions of low O2.
In pathogenic species, it seems to be a survival oxidase [371].

6.3.9 Hydrogenases

Nearby the sMMO genes in cluster 1 is a set of genes encoding a type 3 hydrogenase. Hydrogenase 3
is a membrane-associated respiratory hydrogenase with nickel and iron-sulfur clusters. It has the large
(HycE) and small (HycG) subunits encoded by ORFs 4005 and 4000, respectively, that are characteristic
of most Ni-Fe hydrogenases. The small subunit contains three iron-sulfur clusters and the large subunit
the active site, which is a nickel-iron centre, for the oxidation of H2 into 2 protons and 2 electrons [372,
373]. The enzyme has two additional hydrophilic subunits (HycB and HycF, encoded by ORFs 4001
and 4004, respectively), both of which are iron-sulfur proteins. They are believed to guide the electrons
to low-potential multiheme cytochromes [372]. ORFs 4002 and 4003 encode the two inner membrane
subunits, HycC and HycD, respectively ([374, 375, 376]. The 2nd cluster with genes encoding the
subunits of another Hyc-type hydrogenase 3 is with ORFs 2205 to 2210, clustered in cluster 7. There is
a 3rd hydrogenase gene cluster encoding a bidirectional NAD-reducing Hox-type hydrogenase (ORFs
145-148). They are composed of a diaphorase (HoxFU, encoded by ORFs 0145 and 0146) and a
hydrogenase (HoxYH, encoded by ORFs 0147 and 0148) moiety [377]. These enzymes are composed
of a transmembrane cytochrome b subunit, and periplasmic small and large subunits, the latter bearing
Ni and Fe in the catalytic site. They couple the oxidation of H2 in the periplasm to the reduction
of quinone at the cytoplasmic side of the membrane [378]. Electron transfer through this redox-loop
mechanism serves to generate a proton motive force for ATP synthesis [379, 380].

6.3.10 Origin of the key genes in methane metabolism

The genes encoding homologues of sMMO are found in just a few other mycobacteria, all of which
are fast-growing mycolicibacteria, including M. chubuense, M. holsaticum, M. rhodesiae, and M. ele-
phantis. The protein sequences of their sMMO subunits show a high resemblance with their counter-
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parts from methanotrophic species of the α, β and γ -proteobacteria. Genes encoding AdhD and FDH
are widespread amongst the mycobacteria including both the fast-growing mycolicibacteria and slow-
growing mycobacteria like M. tuberculosis. This is not surprising since many mycobacteria are known
to be able to grow on methanol. Perhaps not all of the members of the AdhD family contain the special
cofactor, hence it is not sure if these have the potential to oxidize CH3OH into formaldehyde. As men-
tioned earlier, M. methanotrophicum does not have moxF like genes. There are, however, a few species
that do have it. Examples are M. goodie, M. smegmatis, M. dioxanotrophicus and M. aquaticum, which
are all mycolicibacteria. The key enzymes for the RuMP pathway, H6PS and H6PI, are much more
unique. Their genes are found in just a small branch of the phylogenetic tree with M. dioxanotrophicus
and M. aquaticum. Related genes are found in Actinobacterial genera other than Mycobacterium such
as Arthrobacter and Cryobacterium. M. dioxanotrophicus has also the moxF gene and may use CH3OH
as carbon and energy source.

6.3.11 Community composition in the cave biofilm

As published previously, the biofilm also contained a prokaryotic species belonging to the genus Acidithiobacil-
lus [345]. Our metagenomic analysis confirms this. Interestingly, this analysis also showed that the
dominant Acidithiobacillus species is closely related to A. thiooxidans, but surprisingly the cave-borne
species can produce a nitrogenase to convert dinitrogen gas into ammonium. The nif genes encoding
its subunits are probably acquired from A. ferridurans via horizontal gene transfer. It should be noted,
however, that related species such as A. ferrooxidans, previously termed Thiobacillus ferrooxidans also
have the potential to express a nitrogenase [381], hence the possession of a gene encoding nitrogenase
may be more widespread within this genus. There were also two different types of Archaea present in
the biofilm, notably Ferroplasma and Thermoplasma species. These species are known to live in acidic
environments and respire sulfur for their free energy metabolism. Apart from the bacteria, there is a
black acidophilic fungus growing in the biofilm, which was previously shown to belong to the genus
Acidomyces. Members of this genus are often present in extremely acidic soils and mine drainages,
notably also from sulfur-containing soils [382].

6.3.12 Phylogeny

Further bioinformatic analyses revealed that M. methanotrophicum shares a unique indel at position
157 to 224 of its 16S rDNA gene with some other mycobacteria identified in various environmental
samples. The sequence is shown in the legend of Table 6.2. The phylogenetic tree including the three
novel Mycobacterium species and based on 136 marker genes is displayed in Figure 6.5. It reveals that
all 3 of them belong to the group of slow-growing mycobacteria [346]. The tree positions M. Methan-
otrophicum close to M. MAG 3 (MAG stands for Metagenome Assembled Genome), both between M.
noviomagense and M. celatum and also close to the M. tuberculosis branch. M. MAG 2 is positioned
closer to M. nebraskense. The Average Nucleotide Identity (ANI) values between M. methanotroph-
icum with M. MAG 2, M. MAG 3 and M. tuberculosis are 77.62%, 84.47% and 76.13%, respectively.
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Table 6.2: Megablast BLASTN results with the partial 5’ 16S rDNA gene fragment of M. methan-
otrophicum from position 157 to 224 covering the unique indel (underlined):
(CATGCATGTGCTGTGGTGGAAAGTGCGGTGTGTAATAGCACTG
TGCGGTGTGGGATGGGCCCGCGGC). A total of 52 sequences was retrieved. N is the number of
similar sequences at the published locations. Descriptions: D1: Clone hbdenovo2332 16S ribosomal
RNA gene, partial sequence; D2: Partial 16S rRNA gene, isolate MOTU28, clone HIGH12_BAC3F8;
D3: Clone L3::G9RA0RH03FR3GD 16S ribosomal RNA gene, partial sequence; D4: Clone EV21 16S
ribosomal RNA gene, partial sequence.

Description
Max
Score

Total
Score

Query
Cover

E value Per. Ident Accession Location N

D1 108 108 100% 3.00E-20 95.59% MH104493.1 Hawaii basalts, Hawaii 2

D2 108 108 100% 3.00E-20 95.52% HF952435.1
Elevated CO2,
Slovenia

1

D3 104 104 97% 4.00E-19 95.38% JX739216.1
Lava Caves in
Lava Beds
California

47

D4 97.1 97.1 95% 7.00E-17 93.85% AF379035.1
Corroded concrete
sewer system, Oostende, Belgium

2

6.3.13 Occurrence of M. methanotrophicum

We were wondering whether or not the Sulfur Cave on Puturosu Mountain is a unique niche for M.
methanotrophicum. To address this question, we sampled at different locations on Puturosu Mountain,
checked for emissions of volcanic gases and the availability of water, measured the pH of the samples,
and isolated the DNA to determine the community profiles. The results are presented in Figure 6.3 and
Table 6.3 and they show that M. methanotrophicum is highly abundant in all types of sample in this
area with a pH of around or below 2 and where volcanic gas emissions occur. M. methanotrophicum
is much less abundant at sites with less or no gas emissions or at sites with a pH higher than 4. The
latter sites also have a higher Shannon index (Figs 4b and d). Typically, all samples dominated with M.
methanotrophicum cluster closely in the PCA plot (Fig. 4a) A BLAST search with the full 16S sequence
of M. methanotrophicum revealed a list of matches to M. tuberculosis strains. But when we used the
5’ part of the 16S sequence we found similar sequences in environmental samples most of them from
areas with volcanic activity, and all of which with the unique indel at the 5’ part of the 16S sequence not
seen in other members of the mycobacteria. This finding suggests that M. methanotrophicum may well
be much more widespread than the sites on Puturosu Mountain. An overview is presented in Table 6.2
along with the 5’ 16S sequence covering the unique indel.
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Figure 6.3: a) PCA plot, b) Richness, c) Relative abundances, d) Shannon index of genera in samples
from Puturosa Mountain. Sample numbers correspond to the sample numbers mentioned in Table 6.3.
The genera with a relative abundance of more than 10% are shown in the list at the right, all others are
merged into the group ‘Others’and coloured blue or black.
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6.3.14 Growth properties of M. methanotrophicum
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Figure 6.4: Growth curves of M. methanotrophicum
in pure culture with methane obtained after a series
of refreshments of the original culture. The blue
dashed lines represent the time points where half
of the culture was withdrawn and replenished with
fresh medium to the original volume.

Although our combined genomic and proteomic
analyses already gave strong support that M.
methanotrophicum grows on methane, we wanted
to substantiate this point further by culturing sam-
ples of the biofilm in defined medium under an
atmosphere of N2, O2, CO2, and CH4 as sole
carbon and energy source. The pH was set at
1.5 to mimic the situation in the cave biofilm.
After a few weeks of incubation, we observed
some growth in the cultures, in some cases with a
small pellicle on top of the medium. Microscopic
analyses revealed the characteristic cells of My-
cobacterium (Figure 6.6). Further refreshments
of the media ultimately resulted in pure cultures
of CH4 growing Mycobacterium, as judged by
microscopic analysis. The growth curve of one of
these cultures is shown in Figure 6.4. From these
data points, one can deduce that the doubling time
is around 150 days. Inoculation of fresh medium
with a sample of that culture roughly showed the
same behaviour. Subsequent 16S rDNA gene se-
quencing of the cells in these cultures revealed
that the V3-V4 region of this sequence was iden-
tical to the one from M. methanotrophicum that

we isolated from the cave biofilm. We also determined the genome sequence of the isolated culture
with Illumina sequencing. This sequence was more than 99 % identical to the one that was assembled
from the metagenome (accession number required here, to be added to the M&M section). The small
differences may come from the fact that the DNA from the isolate was of better quality than that from
the community in the biofilm.
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Table 6.3: Overview of samples taken from sites on Puturosu Mountain close to and in Sulfur Cave.
Samples A are on the way from the hotel Bálványos (46.11752873070979, 25.943739553971696)
to Sulfur Cave (46.12026548940529, 25.94871773373272), samples B at a site close to the hotel
(46.11523807817763, 25.949576040588074). Gas, volcanic gas flowing through a sample; pH, pH
measured with pH paper; DNA, DNA concentration after extraction; %, percentage of M. methan-
otrophicum of total OTUs present in the sample.

Sample Location Gas Type pH
DNA
(ng/ul)

Ca. M. Meth %

A1 Hill top yes soil <2 0.8 79.2
A2 Hill left A yes soil <2 5.2 96.0
A3 Hill left B yes soil <2 5.3 94.0
A4 Hill right B yes soil <2 0.7 81.0
A5 Hill control no soil 6 0.2 3.7
A6 Hill control no soil 5 0.5 7.6
A7 Small cave A yes wall interface <1 1.5 98.5
A8 Small cave B yes wall interface <2 0.3 78.4
A9 Aluin cave A yes wall black spot ND 10.6 20.8
A10 Aluin cave B yes wall black spot ND 1.0 47.2
A11 Sulfur cave A yes wall grey interface <1 1.2 98.6
A12 Sulfur cave B yes wall white interface <1 0.4 98.1
A13 Sulfur cave A no wall entrance bench ND 0.2 6.6
B1 Red pond lowerhill yes red biofilm 5 0.6 0.1
B2 Red pond lowerhill no red biofilm 5 1.1 0.3
B3 White pond lowerhill yes white biofilm 5 1.0 0.7
B4 White pond lowerhill yes white biofilm 5 0.2 0.8
B6 Pond upperhill right yes waterish <2 0.1 95.2
B8 Pond upperhill left yes waterish <2 0.13 95.1
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Figure 6.5: Phylogenetic tree of slow growing Mycobacterium genus.
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The tree was constructed using PhyloPhlAn v3.0 [383] on 136 universal gene markers. Branches of M.
methanotrophicum, M. MAG 2 and 3 are coloured green, pink and blue, respectively, while their names
are contrasted with black background and white letters.
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Figure 6.6: Phase contrast image of M. methanotrophicum

M. methanotrophicum growing on defined medium with methane at 1000 times magnification and with
oil immersion.
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6.4 Discussion

This paper describes the identification and cultivation of a novel type of methanotrophic Mycobacterium
that we have designated M. methanotrophicum. It was identified in a biofilm at a gas-chemocline inter-
face on the cave wall of Sulfur Cave in Romania where it can use both O2 present in the upper phase and
CH4 that is present in the lower phase. We have demonstrated that the isolated M. methanotrophicum
grows on CH4 as the sole energy source and that it incorporates labelled CH4 into its biomass. Among
the most ubiquitous proteins identified by mass spectrometry are many of the key enzymes of CH4
metabolism for the sequential monooxygenation to CH3OH and further oxidation via formaldehyde
and formate to CO2 using a soluble methane monooxygenase, an NDMA-type alcohol dehydrogenase,
a glutathion independent FyDH and an NAD+ dependent FDH, successively. Most methanotrophic
species or CH3OH oxidizers recruit a PQQ dependent MoxF like methanol dehydrogenase, but this
is absent in M. methanotrophicum. The alcohol dehydrogenase may serve as an alternative candidate
in the pathway, although members of this protein family appear to oxidize CH3OH much slower than
ethanol. On the other hand, M. methanotrophicum is, with a doubling time of 150 days, a slow-growing
Mycobacterium, hence the CH3OH oxidation step is most likely not the limiting factor for the maxi-
mum specific growth rate. Although one may expect that the rate of CH3OH oxidation is lower with the
AdhD, its efficiency concerning free energy transduction is likely higher as it makes use of NAD+ as
electron acceptor rather than PQQ in MoxF-type enzymes. This is because oxidation of reduced PQQ
contributes with 2 charge separations per electron moved to O2, while it is 5 when NADH is oxidized by
NADH dehydrogenase via the cytochrome bc1-complex and the aa3-type oxidase. Hence, this implies
some kind of trade-off between rate and efficiency of the CH3OH oxidation step. The stoichiometry is
different when the bd-type quinol oxidase is active in respiration rather than the aa3-type cytochrome
c oxidase as the total charge separation for electron transfer from NADH to O2 in that case would be
3 rather than 5. This is because the latter pathway bypasses the electrogenic cytochrome bc1-complex
on the one hand while cytochrome bd is half as efficient in free energy transduction as compared to
the aa3-type cytochrome c oxidase on the other hand. The carbon source for M. methanotrophicum is
likely formaldehyde which is incorporated in central metabolism using the RuMP pathway. RuMP, pro-
duced by the pentose phosphate pathway, is central to this pathway for assimilation of formaldehyde,
ultimately resulting in the formation of xylulose-6-P for the synthesis of carbohydrates via gluconeo-
genesis. Notably, the key enzyme of the TCA cycle is not a canonical NAD+ dependent alpha-keto
glutaric acid dehydrogenase, but it likely produces succinyl-CoA from alpha-keto glutaric acid with a
ferredoxin dependent 2-oxoglutarate synthase, suggestive for low activity in the decarboxylating part
of the TCA cycle. Completing the cycle is most likely achieved via the glyoxylate shunt as judged
by relatively high concentrations of its key enzymes, apparently to prevent loss of carbon via decar-
boxylation reactions. This seems to be a quite common strategy of species growing on C1 compounds,
allowing simple carbon compounds to be used in the later synthesis of macromolecules, including
glucose [384]. Taken together, all key enzymes of cycles and pathways for CH4 metabolism are in
the list of abundantly expressed proteins. More precisely, H6PS and 6PGDH in the RuMP pathway,
transaldolase and transketolase in the pentose P pathway, PEP carboxylase, phosphoglycerate kinase
and glyceraldehyde-3-phosphate dehydrogenase for gluconeogenesis and malate synthase for the gly-
oxylate shunt. M. methanotrophicum is the only species in the genus Mycobacterium sequenced to
date that has the unique combination of genes encoding sMMO, AdhD, H6PS and H6PI to use CH4
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as energy source combined with formaldehyde incorporation via the RuMP pathway as carbon source.
The sMMO genes were likely acquired via horizontal gene transfer as they are found in just a few my-
cobacteria and the next relatives are all from the Proteobacteria. Remarkably, M. methanotrophicum
has only a single gene cluster encoding methane monooxygenase and no other gene clusters encoding
alternative alkane monooxygenases. This is in contrast to related species such as M. chubuense, which
possesses at least 6 complete gene clusters encoding different types of alkane monooxygenase [385].
Apparently, M. methanotrophicum has a type of metabolism that is uniquely devoted to growth on CH4,
while the latter is a more versatile hydrocarbon degrader. We acknowledge an old study that describes
studies on a methanotrophic Mycobacterium ID-Y, which was isolated from Lake Erie, Ohio, upon en-
richment of methylotrophic bacteria [386]. It was not clear to us, though, if the enrichment was pure
and there are no follow up publications on this isolate. We should consider methanotrophic growth with
formaldehyde as the carbon source as chemoorganoheterotrophically as both the electron donor CH4
and the carbon source formaldehyde are organic. Yet, carbon uptake may be facilitated with additional
carboxylating enzymes like pyruvate carboxylase, which is an abundant protein in the biofilm produced
by M. methanotrophicum. Pyruvate carboxylases have biotin as a cofactor [387]. It is noteworthy that
the biotin synthase gene cluster is adjacent to the gene encoding formate dehydrogenase. It is tempting
to speculate that a possible coordinated expression of them controls the activity of pyruvate carboxylase
via biotin insertion to balance methane oxidation and carbon assimilation. Most of the genes encoding
the key enzymes for CH4 oxidation for free energy transduction on the one hand and pentose-P path-
way, RuMP pathway, gluconeogenesis and the glyoxylate shunt for carbon metabolism, on the other
hand, are grouped in mosaic-like gene clusters with different combinations of genes encoding enzymes
for the different pathways. These clusters are scattered throughout the genome. It suggests coordi-
nate expression of all crucial pathways in its total central metabolism perhaps to tune their concentra-
tion and activity towards one another thereby preventing the accumulation of toxic intermediates, like
formaldehyde, on the one hand, yet to strive after relatively fast fluxes on the other hand. Some of these
clusters are adjacent to genes encoding hydrogenases. M. methanotrophicum has quite a few different
types of hydrogenase, one of which is a [Ni-Fe]-hydrogenases that may serve in additional free energy
transducing systems. This hypothesis has been experimentally verified in Verrucomicrobia growing
mixotrophically on both CH4 and H2 with the concomitant increase of their growth rate as compared to
growth solely on CH4 [388]. Verrucomicrobia-dominated soil communities from an acidic geothermal
field in Rotokawa, New Zealand rapidly oxidized CH4 and H2 simultaneously [388]. It turned out that
H2 oxidation was particularly important for adaptation to CH4 and O2 limitation. Genes encoding a
putative O2-tolerant uptake [Ni-Fe]-hydrogenases are also in the genome of M. methanotrophicum. H2
oxidation may well be a general metabolic strategy during mixotrophic growth as they were also identi-
fied in publicly available genomes of other methanotrophs. An important question that remains is why
the three different types of Mycobacterium evolved in the acidic biofilm at the gas interface of this cave
instead of being outcompeted by other types of methanotrophs. One explanation is that they have a spe-
cial membrane with mycolic acids that make the cells more robust and protective against environmental
threats and perhaps that is the reason why these species were selected at this low pH. Both Archaea that
were identified as prominent species belong to the genera Ferroplasma and Thermoplasma, which are
both characterized by membrane fortification to withstand the harsh acidic conditions, i.e. tetraether
lipids that form a membrane monolayer. Also A. thioxodians has a special ornithine-containing lipid
that probably plays a role in acid resistance. Mycobacteria are common in soil samples, although nor-
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mally their abundance varies at relatively low levels (from 0.03% to 3.0% of all 16S rDNA gene reads,
[349]) with a higher number in more acidic conditions. We have found only one publication describing
mycobacteria from extreme conditions, a M. parascrofulaceum strain from an acidic (pH 3) hot spring
of Yellowstone National Park [389]. Although these studies indicate that mycobacteria can indeed grow
at low pH conditions, the dominance of mycobacteria in Sulfur Cave is surprising and remarkable. Our
further analyses of soil samples in the proximity of the cave indeed corroborates our hypothesis that
the pH is one of the drivers for niche formation by M. methanotrophicum. All the samples that we
analyzed from sites where volcanic gas escaped from the deeper layers, and which had relatively high
numbers of M. methanotrophicum, were strongly acidic, while its numbers were much less in samples
with higher pH values. Also, we believe that we have traced relatives of M. methanotrophicum by
Blasting their 5’ 16S rDNA sequence containing a unique indel. This search revealed mycobacterial
species from environmental samples, apparently characterized by CH4 emissions and low pH values
as well. In summary, we hypothesize that the dominant M. methanotrophicum is the primary producer
of cellular biomass from CH4, and that other members of the community profit from it, most likely by
feeding on necromass containing hydrocarbons, peptides and fatty acids as secondary sources of carbon
and energy [390]. We also speculate on more syntrophic interactions between Acidothiobacillus and
the other members of the community as the former can produce nitrogenase that could fix nitrogen into
ammonium to meet the nitrogen demands of the primary and secondary producers. Indeed, it seems
that there is some nitrogen cycling in the biofilm, not unexpectedly since such a community most likely
has been present in the cave for a long time during which fixed nitrogen ultimately accumulates. Other
essential nutrients, like metals and potassium, are probably extracted from the bedrock and exchanged
within the biofilm.

6.5 Material and methods

6.5.1 Sampling

The biofilm samples were collected from the cave wall of Sulfur Cave in Romania with sterile cotton
swaps and stored in sterile nunc cryotubes. To preserve the samples during transport a few drops of
water were added (only for samples indented to growth experiment, not for proteomics/metagenomics).
Proteomics and metagenomics were performed on the same sample. For both proteomics and metagenoim-
ics we first added fysiological salt to the biofilm to suspend the biofilm material and eliminate the larger
particles (rock grit). One part was used to isolate DNA using the DNeasy powersoil kit the other part
was used to lyse the bacteria using teh protocol desribed in [391]. Samples of both soluble and insoluble
proteins were analysed.

6.5.2 Proteomics analysis

All tandem mass spectra were analysed using MaxQuant version 1.6.10 [392] and searched against the
a concatenated protein database containing entries from both the crude and cave sample. Peak list gen-
eration of label-free tandem mass spectra was performed within MaxQuant using default parameters
and the built-in Andromeda search engine. Enzyme specificity was set to consider fully tryptic peptides
with two missed cleavages were allowed. Oxidation of methionine and N-terminal acetylation were
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allowed as variable modifications. Carbamidomethylation of cysteine was allowed as a fixed modifi-
cation. A protein and peptide false discovery rate of less than 1% was employed in MaxQuant with
match between runs enabled. Proteins that contained similar peptides that could not be differentiated
on the basis of MS/MS analysis alone were grouped to satisfy the principles of parsimony. Reverse
database hits, contaminants and proteins only identified by site modifications were removed prior to
data analysis.

6.5.3 DNA isolation and 16S rRNA gene sequencing

DNA of the methanotrophic culture was extracted using the MoBio PowerSoil® DNA Isolation kit
(Carlsbad, CA, USA) according to the manufacturer’s instructions. Amplification was carried out with
universal primers 8F (5’- AGAGTTTGATYMTGGCTCAG -3’) and 1512R
(5’- ACGGYTACCTTGTTACGACTT-3’) as described previously [393]. Reactions were performed in
a Thermocycler (Biometra, Analytik Jena, Germany). PCR products were purified and sequenced by
Macrogen Europe. These sequences were compared with known 16S rRNA gene sequences deposited
in the GenBank database using the BLAST search at the National Center for Biotechnology Information
(http://www.ncbi.nlm.gov.BLAST/).

Table 6.4: Similarity of the conserved genes with other species.

Refined MAG 1
M. methanotrophicum

Refined MAG 2 Refined MAG 3

16s (Blastn) M. angelicum (99%) M. bohemicum (99%) NA

16s (Ezbiocloud)

M. asiaticum
DSM 44297(T)

(98.07% Similarity,
100% Completeness)

M. bohemicum
DSM 44277(T)

(99.54% Similarity,
60.8% Completeness)

NA

hsp65
M. kansasii (92%)
M. simiae (92%)

M. haemphilum (91%)
NA NA

6.5.4 Metagenomics analysis

The crude gDNA was subjected to DNA library preparation using Ovation® Ultralow System V2 ac-
cording to the manufactory’s instruction and sequenced on a HiSeq4000 platform. The raw reads were
filtered with BBDuk (http://jgi.doe.gov/data-and-tools/bb-tools/) to remove Illumina adapters, phiX,
and low-quality bases from both ends to Q30. The “clean reads” were then assembled with MEGAHIT
assembler [103] and the mycobacterial assemblies was binned using gbtools [394] and annotated with
Prokka [268] and eggNOG [395]. The contamination and completeness of the assemblies were ex-
amined by CheckM [396]. An overview of the statistics of assemblage of the three mycobacterial
Metagenome-assembled genomes (MAGs) are presented at Table 6.5 and their corresponding KEGG
ortholog (KO) profiles were compared with those from reference genomes of M. tuberculoses and M.
gordonae at Figure 6.7.
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Table 6.5: Basic Statistics of Crude sample assemblies which resulted on three high quality mycobac-
terial MAGs.

Refined MAG 1
Ca. M. Methanotrophicum

Refined MAG 2 Refined MAG 3

Assembly Length
(bp)

4,409,390 4,592,045 5,112,202

Contigs 169 197 467
N50 (bp) 65,873 155,066 37,850

Completeness (%) 99.17 98.42 93.56
Contamination (%) 1.15 1.32 3.02

tRNA 54 52 62
rRNA 3 2 0
CDS 4,576 4,239 5,275

Table 6.6: Gene clusters mentioned in the paper along with the accompanying ORF numbers, the
pathway of the enzymes and additonal ORFs encoding enzymes of the RuMP cycle. sMMO, soluble
methane monooxygenase; Hyd/hyc, hydrogenase; ADH, alcohol dehydrogenase; FDH, formate dehy-
drogenase; RuMP, ribulose-5-P pathway; Pent-P, pentose-P-pathway.

Cluster ORFs in the cluster Pathway RuMP enzymes
1 4000-4016 sMMO+Hyd+PEP kinase
2 2892-2905 ADH
3 1085-1090 FDH
4 831-853 RuMP H6PS, H6PI
5 4305-4311 RuMP 6PGDH, GPI, G6PDH
6 170-188 Pent-P
7 2182-2221 Glyoxylate, RuMP, hyc 6PGDH (2), G6PDH
8 1782-1785 ATPase
9 2852-2859 cytochrome bc1 and aa3
Additional ORFs ORFs position Pathway RuMP enzymes
1 214 RuMP G6PDH
2 378 RuMP GPI
3 636 RuMP G6PDH
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Figure 6.7: Venn diagram of the KO profiles of the three mycobacterial MAGs, M. tuberculoses and M.
gordonae.

M. methanotrophicum

M. MAG 2

M. MAG 3

M. tuberculosis

M. gordonae

Note, 1233 KOs were shared between all five mycobacteria KO profiles.
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6.5.5 Phylogenomics

The phylogenetic tree was constructed using PhyloPhlAn v3.0 [383]. The 3 Mycobacterium MAGs
alongside 69 public available Mycobacterium genomes sequences [346] was used as input to the pipeline.
From those 10 genomes was not pass the quality control and filtered out and 1 was manually removed,
thereafter the final number resulted to 61 genome sequences. The PhyloPhlAn parameters "–accurate"
and "–diversity low" were applied which translate to usage of pfasum60 substitution matrix, trimming
was performed by remove columns with at least one nucleotide appearing above 0.99 threshold, the
multiple sequance allignments (MSAs) are checked and cleaned from fragmentary entries. The param-
eter "min_num_entries" was set to the value of 50 which reflect the using of marker genes which are
present at least on 50 genome sequences. This resulted on the usage of 136 out of the 400 universal gene
markers. diamond was used for sequence alignments [397], MUSCLE to perform MSAs [398], trimAl
for tasks of the phylogenetic analyses [399] and fasttreeMP which infers approximately-maximum-
likelihood phylogenetic trees [400]. visualization of tree was performed with iTOL [401].

6.5.6 Physiology

The culturing approach was as follows. In April 2018 liquid cultures were started from biofilm samples
collected from the cave wall of Sulfur Cave in Romania. A 15 ml tube was filled with 2 ml of phosphate
buffered saline (PBS; 8 g l-1 NaCl; 0.2 g l-1 KCl; 1.44 g l-1 Na2PO4*7H2O; 0.24 g l-1 KH2PO4, pH
7.4) after which a small amount of that biofilm was used as inoculum. This biofilm suspension was
shaken overnight at 25 degrees Celsius in the dark to detach the bacteria as much as possible. After
that, 50 µl of the cell suspension was added to 3 ml of nitrogen mineral salts medium (NMS; 1 g l-1
KNO3; 0.54 g l-1 KH2PO4; 399.36 mg l-1 MgSO4 * 7H2O; 15 mg l-1 CaCl2*2H2O; 1 ml l-1 trace
elements stock solution containing: 5 g l-1 EDTA; 2 g l-1 FeSO4*7H2O; 0.1 g l-1 ZnSO4*7H2O; 0.03
g l-1 MnCl2*4H2O; 0.2 g l-1 CoCl2*6H2O; 0.1 CuCl2*5H2O; 0.02 g l-1 NiCl2*6H2O; and 0.03 g l-1
Na2MoO4). The pH was set at 1.5 using 1.0 M H2SO4. Petri dishes (Greiner CAT# 627161) with 3 ml
NMS and 50 µl biofilm suspension were incubated in a custom build chambers (see Veraart et al 2018),
with a total volume of 200 ml containing 50% CO2, 25% CH4 and 25% air at 25 degrees Celsius in the
dark. After consistent growth of the primary culture was established in March 2019, a second culture
was started form culture 1. From May 2019 onwards, the optical density at 660nm was measured to
assess the growth rate of the cultures. Phase contrast images were taken using a ZEISS AXIO imager
M1 Microscope.

Data Availability Statement

Genome sequencing data are available at NCBI, under BioProject PRJNA675490, temporary submis-
sion ID: SUB8486643 (Release date: 2021-12-01).
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Chapter 7

High biodiversity in a benzene-degrading
nitrate-reducing culture is sustained by a
few primary consumers1

7.1 Abstract

A key question in microbial ecology is what the driving forces behind the persistence of large biodi-
versity in natural environments are. We studied a microbial community with more than 100 different
types of species which evolved in a 15-years old bioreactor with benzene as the main carbon and free
energy source and nitrate as the electron acceptor. Using genome-centric metagenomics plus metatran-
scriptomics, we demonstrate that most of the community members likely feed on metabolic left-overs
or on necromass while only a few of them, from families Rhodocyclaceae and Peptococcaceae, are can-
didates to degrade benzene. We verify with an additional succession experiment using metabolomics
and metabarcoding that these few community members are the actual drivers of benzene degradation.
As such, we hypothesize that high species richness is maintained and the complexity of a natural com-
munity is stabilized in a controlled environment by the interdependencies between the few benzene
degraders and the rest of the community members, ultimately resulting in a food web with different
trophic levels.

1Accepted at (Communications Biology) in collaboration with Lucas Fillinger, Siavash Atashgahi, Ulisses Nunes da
Rocha, Esther Kuiper, Brett Olivier, Martin Braster, Willi Gottstein, Rick Helmus, John Parsons, Hauke Smidt, Marcelle
van der Waals, Jan Gerritse, Bernd W Brandt, Wilfred F.M. Röling, Douwe Molenaar and Rob van Spanning [390]
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7.2 Introduction

Microbes typically live in complex and diverse communities [402, 403, 404] the richness of which
may in part be determined by environmental conditions like the availability of suitable carbon and free
energy sources and the spatial and temporal variability of this environment [82, 83].Besides environ-
mental conditions, many ecological factors determine the structure and activity of these communities.
Such as competition for resources, collaboration by exchange of products, inhibition in a chemical
warfare and spatial organization [92]. The extent to which environmental effects and interactions with
other organisms can determine species richness in a community is still an open question [82, 405, 406].
Here we study a microbial community living in an anaerobic fixed film bioreactor with benzene as the
main sources for carbon and free energy and nitrate as the terminal electron acceptor, thereby creating a
relatively simple environment. This microbial community was enriched from soil samples of a benzene-
contaminated industrial site and has been maintained already for 15 years [407], which is enough time
to purge a putative initial diversity by mechanisms like competitive exclusion and random fluctuations
[408, 409, 410]. Nevertheless, the culture is currently remarkably rich in species [411, 412]. Spatial
and temporal heterogeneity as well as the variety of interactions between organisms are then created
and maintained by the community itself, aided by mechanisms like wall adherence and patch formation.

Over the years, a biofilm developed on the interior glass wall of the bioreactor, hosting more than
100 different types of operational taxonomic unit (OTU) based on 16S rRNA sequencing [412]. It has
been hypothesized that these types of microbial community may hold many types of interaction between
key players in benzene degradation and other members of the community [413]. A recent study on the
same bioreactor revealed high levels of transcripts for an anaerobic benzene carboxylase and a benzoate-
coenzyme A ligase produced by Peptococcaceae [411]. This finding was in line with other research on
benzene degradation where this species was a key player in anaerobic benzene degradation [414, 415].
Benzene is an aromatic hydrocarbon, which occurs in crude oil and petroleum products like fuels. Due
to its high toxicity and water solubility, benzene is of major concern as environmental contaminant
[416]. Microbes can efficiently open the ring-structure of benzene in the presence of oxygen [417].
However, in hydrocarbon-contaminated subsurface environments, oxygen is rapidly depleted [418, 419]
leading to anaerobic benzene degradation, which takes place at a lower rate [418, 420]. Although the
biochemistry of anaerobic benzene degradation is relatively well-known [421, 422, 420], the related
metabolic pathways are less clear. A comprehensive overview was recently given by Meckenstock et al
[423] and it is also a field of active research [424, 425, 426, 427, 407, 414, 152, 413, 428, 429].

The aim of this work was to get a more fundamental understanding of the diversity, structure,
metabolic potential and dynamics of the anaerobic benzene-degrading microbial community. More
specifically, we aimed at getting insight in the driving forces behind the persistence of large biodi-
versity in natural environments. We used metagenomics to obtain metagenome-assembled genomes
(MAGs), which are assumed to be accurate representations of genomes of individual species [212].
The inferred functions of their genes indicated the potential physiological properties of these species
[219]. Metatranscriptomes originating from the biofilm and the liquid phase of the bioreactor were
mapped to these MAGs to obtain a measure of their global activity, as well as of the activity of indi-
vidual genes and pathways. This integrated approach yields a view of the abundances, phenotypes, and
activities of these species in these phases [430, 431, 432]. An additional experiment was designed to
independently identify the main organisms that drive anaerobic benzene degradation as well to explore
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the metabolism of the culture. To this end, we inoculated a series of batch cultures of the 15 years-old
microbial community at low cell densities. The samples were sacrificed over time and analyzed for
metabolomics on the one hand, and for their community composition based on 16S rRNA gene am-
plicon sequencing on the other hand. As such we i) identified the drivers for benzene degradation, ii)
got insight in the niches of the community members in the bioreactor and iii) hypothesized about the
relevance of niche partitioning and microbial interactions in order to explain the unexpected diversity
of species in a bioreactor fed with benzene as main source of carbon and free energy.

7.3 Results

7.3.1 Diversity and activity of the anaerobic benzene degrading community

We reconstructed 111 MAGs from the metagenomes derived from two samples taken from the biofilm
of the culture. From these, 47 high quality MAGs were selected (Methods "Metagenomics analysis",
Table A.11). The transcriptomes obtained from samples taken from the biofilm and the liquid phase of
the culture, were mapped to the predicted genes of all 111 MAGs. Both in the biofilm and the liquid
samples the abundance of RNA mapped to MAGs correlated positively with the abundance of the DNA
assigned to the MAGs (Figure A.31 A & B, Table A.11). The specific RNA abundance per MAG was
calculated in biofilm and liquid phase samples as a measure of its transcriptional activity (eqs. (7.1)
to (7.3)). In fig. 7.1 a the specific RNA abundance of biofilm versus liquid revealed a gradient of
transcriptional activity (high/intermediate/low), with MAGs 3 and 9 displaying the highest activity, a
dozen displaying intermediate activity and the majority displaying low activity. The same conclusion
can be drawn when transcriptional activity is calculated as the percentage of transcribed genes per
MAG. 32 out of the 47 MAGs were found to have a significantly higher specific RNA abundance in
samples from the biofilm compared to those from the liquid phase with the exception of four MAGs,
including MAG 9, which had the highest overall transcriptional activity in both phases (Figure A.32).

7.3.2 Global functional groups and their relation to taxonomic groups

The 47 high quality MAGs were further analyzed by annotating predicted genes using orthology re-
lationships. The presence and absence of genes in the Kyoto Encyclopedia of Genes and Genomes
(KEGG) orthology (KO) groups was used to determine potential functional groups of MAGs. Based
on these results, the MAGs were divided into 8 clusters, which were classified into three main groups
based on a UMAP dimension reduction. In fig. 7.1 b the potential functional landscape is visualized.
MAGs of group A (Clusters 3 and 8) and group B (Clusters 4, 6 and 7) were more similar in terms of
identified function compared to group C (Clusters 1, 2 and 5). Furthermore, members of group C were
found to have a significantly higher absolute number of annotated KOs, but not a significantly different
ratio of KO annotations (Figure A.33). Only seven out of the 47 selected MAGs were found to have
a high specific RNA abundance and high transcribed KO ratio (Figure A.33). Those seven MAGs are
distributed over the three groups (fig. 7.1 b; group A: 9, 1, 5; group B: 18, 20 and 3; group C: 6).
We considered these MAGs as putative dominant members of the community and prime candidates to
explore their transcription profile in more detail.

The overall taxonomic grouping of the 47 selected MAGs corresponded well with the functional
grouping. Functional group A has seven members of the Chloroflexi, four of the Actinobacteria and
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Figure 7.1: Relationship of MAGs in biofilm and liquid according to specific RNA abundance and their
functional grouping.
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a) Relationship between specific RNA abundance in biofilm and liquid for all MAGs. The black-
coloured points indicate good- and high-quality MAGs which were used for further analysis. The
relative placement of the points with the red diagonal line reveals in which phase the specific RNA
abundance is higher. The size reflects the percentage of identified genes with mapped mRNA. Note that
MAG 9 occupies the highest specific RNA abundance in both phases followed by MAG 3. MAGs 1,
2, 5, 6, 8, 18 and 20 have a medium level of specific RNA abundance. b) Functional landscape of the
selected MAGs. The colours of the points indicate 8 functional clusters of MAGs, while the ellipses
further gather them into three groups. The shape of the points indicates the ratio of the transcribed KOs
(KEGG Orthology) where the circular points are from the dominant members (as defined in the text)
of the community and the rhombus points are from the non-dominant members of the community. For
the dimensional reduction and clustering, we used Uniform Manifold Approximation and Projection
(UMAP) and affinity propagation, respectively, on the binary (presence/absence) KO matrix. Note that
the dominant MAGs are distributed across the functional groups.
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one of the Firmicutes; group B is composed of 11 members of the Bacteroidetes, three of the Gemma-
timonadetes, two of the Verrucomicrobia and one member each of the Acidobacteria, of the Armati-
monadetes, of the Myxococci and of the Planctomycetes; and group C is composed of 15 members of
the Proteobacteria (Figure A.34 & Table A.12). An additional 22 MAGs showed significant matches
with the Silva 132 database of ribosomal RNA (Table A.12). Further details about the taxonomy of the
MAGs is presented in the Section A.4.10 and Section A.4.16.

7.3.3 Genomic potential of the community members

A substantial part of KOs is shared between the three functional groups (2807 out of 6449 unique
KOs), while many other KOs are unique for each group. Moreover, the different clusters within each
group showed differences in their KO profiles (Figure A.35). Feature selection revealed 193 KOs,
which further mapped into 16 KEGG pathways as discriminators for the three functional groups (Fig-
ure A.36 A & B). We performed a number of targeted searches on potential functionality (genes) and
activity (mRNAs) of each of the MAGs. We found that MAGs 3, 6 and 9, as well as those from the
Proteobacteria have more and relatively highly expressed genes required for motility and/or adhesion,
such as the biosynthesis of flagella and/or pilus systems (Figure A.37 & Figure A.38). Notably, all
MAGs from the Chloroflexi expressed relatively high levels of mRNAs encoding peptidases, extracel-
lular solute-binding proteins and specific ABC-type transporters. This property is shared with one of
the Bacteroidetes (MAG 18). Members of cluster 2 from the Proteobacteria were found to contain the
majority of genes encoding secretion systems, with MAG 36 (Hydrogenophagus) having genes for even
different types of these systems (Figure A.39). Additionally, we noted relatively high concentrations of
mRNAs encoding a type II secretion system from MAG 66 (Actinobacteria), types II and III from MAG
22 (Armatimonadetes) and type VI from MAG 7 (Acidobacteria) and MAG 10 (Ignavibacteria). Genes
encoding nitric oxide dismutase (NOD) were found in MAGs 33 (re-assigned on MAG 0), 34 and 71.
From those, only MAG 34 passed the quality control and was classified as an unknown member of the
γ-proteobacteria (Figure A.63). MAG 3 belongs to a member of the Planctomycetes with the highest
similarity to Candidatus Kuenenia stuttgartiensis (average nucleotide identity 94.7%). The MAG has
the key genes for anaerobic ammonium oxidation (anammox), hydrazine synthase and dehydrogenase.
A further description of the metabolic and structural characteristics of the MAGs is available in Section
A.4.17.

7.3.4 Metabolism of benzene

In order to characterize the metabolic potential of MAGs, we selected all known pathways involved in
anaerobic benzene degradation, central carbon metabolism and nitrate reduction (Section A.4.14 for de-
tails, Figure A.42 - Figure A.47). A network of these pathways using lumped reactions was created for
visualization (Figure A.55 - Figure A.59). Using these custom pathways and corresponding networks,
we found only two MAGs from the dominant species with the potential to activate and further degrade
benzene anaerobically (primary consumers, fig. 7.2). These are MAGs 6 and 9 that were identified as
members of Rhodocyclaceae and Peptococcaceae and belong to groups C and A, respectively (fig. 7.2
c). In both MAGs we observed a high expression of genes involved in anaerobic benzene degradation,
such as UbiD/UbiX-related carboxylases, benzoate-CoA ligase and benzoyl-CoA reductase. Some non-
dominant Proteobacteria (MAGs 19, 25, 47 and 68) have the potential to be primary consumers as well
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Figure 7.2: Metabolic heatmaps of anaerobic benzene degradation in MAGs 9 (Peptococcaceae), and
20 (Ignavibacteriaceae) and relationship between functional diversity and potential to degrade benzene

m
e
a
n
(lo

g
2

(1
+

m
R

N
A

-K
O

s))

a b

●●

●

●

●

●

●

1

5

9

18

20

3

6

None

Low

Medium

High

Group A Group B Group C
Functional diversity

Dominant organismsc

Po
te

n
ti

a
l 
p
ri

m
a
ry

 c
o
n
su

m
e
r

o
f 

b
e
n
ze

n
e

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●
●

●
●

●

●

●

●

●

● ●
●

19

25 47

68

None

Low

Medium

High

Group A Group B Group C
Functional diversity

Non−Dominant organismsd

Higher in:
●a

●a

●a

Biofilm
Liquid
Biofilm/Liquid

MAG 009

●

●
● ●

●

●

●

●

●

●●

●

●

●

Anammox

Benzene lower

Mid aerobic
Mid anaerobic

Benzene open 01

Benzene open 02
Benzene open 03

Benzoyl CoA syn 01
Benzoyl CoA syn 02

Benzoyl CoA syn 03

Denitrification

DNRA

Fermentation 01

Fermentation 02

Glyoxylate shunt

Respiration

TCA

Benzene

Benzylsuccinate
Benzoate Hydroxybenzene

Benzoyl−CoA

Acetyl/Succinyl−CoA

Hydroxipimelyl−CoA

Crotonyl−CoA

Acetyl−CoA−out

Glyoxylate shunt−outTCA−out

Acetate

Butyrate

Nitrate

MAG 020

●

●
● ●

●

●

●

●

●

●●

●

●

●

Anammox

Benzene lower

Mid aerobic
Mid anaerobic

Benzene open 01

Benzene open 02
Benzene open 03

Benzoyl CoA syn 01
Benzoyl CoA syn 02

Benzoyl CoA syn 03

Denitrification

DNRA

Fermentation 01

Fermentation 02

Glyoxylate shunt

Respiration

TCA

Benzene

Benzylsuccinate
Benzoate Hydroxybenzene

Benzoyl−CoA

Acetyl/Succinyl−CoA

Hydroxipimelyl−CoA

Crotonyl−CoA

Acetyl−CoA−out

Glyoxylate shunt−outTCA−out

Acetate

Butyrate

Nitrate

0.00

0.85

1.70

2.55

3.40

4.25

5.10

5.95

6.80

7.65

8.50
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and lowest potential for benzene metabolism, respectively. The square nodes represent the average
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MAGs to be a primary consumer of benzene (the ability to activate and further degrade benzene) based
on a custom classification for c) dominant and d) non-dominant MAGs. The colours indicate the culture
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3, 5, 18 and 20. Data are shown jittered for both axes.
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(fig. 7.2 d). Surprisingly, MAGs 19, 36, 47, 56 and 68 showed high expression of genes involved in the
aerobic degradation of aromatic compounds, including benzoyl-CoA oxygenase. Moreover, MAGs 19
and 68 showed high expression of genes encoding protocatechuate 4,5-dioxygenase, another oxygen
demanding enzyme central in 3,4-dihydroxybenzoate metabolism. For further details on metabolism of
benzene we refer to Section A.4.19.

7.3.5 Nitrogen cycling

Nitrate is the main electron acceptor supplied to the benzene-degrading microbial community. The
major processes of respiratory electron flow to nitrate and nitrite are i) dissimilatory reduction of nitrate
or nitrite to ammonium (DNRA) and ii) sequential reduction of nitrate to dinitrogen gas (denitrification).
Most of the 47 MAGs have the potential to perform DNRA (8 MAGs), denitrification (31 MAGs), or
both (5 MAGs). Only 3 MAGs, 3, 7 and 36, are unable to do so although they have a gene encoding a
nitrate reductase but lack one encoding a nitrite reductase (Section A.4.15 for details).

7.3.6 Succession of communities in batch grown cultures

A succession experiment was performed to investigate the metabolism of the community as well as to
identify the drivers of benzene degradation after giving them a fresh start. For that, we grew highly
diluted batch cultures from the original bioreactor with benzene as carbon and free energy source and
nitrate as electron acceptor. The cultures were sacrificed at different time intervals up to 34 days after
inoculation and analyzed for the community composition on the one hand and concentration of the
metabolites on the other hand. Over this time period, individual batch cultures displayed high variability
in rates of benzene consumption (fig. 7.3 a). Some cultures depleted benzene within 22 to 26 days,
whereas others had not even started consuming benzene after 34 days. We identified three stages based
on the pattern of nitrate consumption (fig. 7.3 a). Stage 1 was characterized by a lack of benzene
consumption. In stage 2, benzene was consumed until a residual concentration of approximately 0.04
mM, and in stage 3 benzene was depleted down to a residual concentration of around 0.005 mM.
Notably, the differences in benzene degradation rates could not be explained by differences in cell
densities. As shown in fig. 7.3 c, cell densities increased quickly after inoculation and then slowly rose
up to 20 days. After that time, there were cultures in which benzene had been depleted, but with a
range of densities between 105 and 2 × 106 cells per mL. We also observed cultures with high cell
density in which benzene degradation did not occur. It may well be that these cultures consumed the
acids and vitamins as alternative carbon and free energy source (fig. 7.3 d). fig. 7.3 c shows how nitrate
consumption, nitrite production and benzene consumption are linked. The data points of the individual
cultures form a continuum, suggesting a single deterministic process of benzene degradation. The three
stages corresponded to segments of this continuum. Cultures in the early phase of stage 1 consume
nitrate without accumulation of nitrite. In a later phase of stage 1, the cultures consumed nitrate and
produced nitrite at a stoichiometric 1:1 ratio until a nitrate concentration of about 0.5 mM, indicated
by the sloped grey line in fig. 7.3 c. The later phase corresponds to stages 2 and 3, where nitrate was
further consumed whereas the nitrite concentration increased at a lower rate up to 0.7 mM and 0.8 mM,
respectively (Figure A.61). Benzene is consumed only in this phase. We measured concentrations for
some of the vitamins in the medium samples (i.e. those listed in Table A.13 and Table A.14). However,
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we could not detect any of the intermediates of benzene metabolism (Table A.15 and Table A.16) in the
medium samples.

7.3.7 Community composition of the batch grown cultures

We determined the community composition in each of the cultures by amplicon sequencing of the 16S
rRNA gene. Reads corresponding to 192 OTUs were identified and, after correction for 16S rRNA gene
copy numbers, expressed as fractions of total corrected reads. Using the measured total cell densities,
OTU-specific cell densities were calculated for each sample. We subsequently identified a transition
in community composition as well in the OTUs of which the cell densities correlated with the three
stages of culture development (fig. 7.4 & Figure A.62). The strongest correlations were observed for
OTU624837510 and OTU91680185 whose sequences belong to the genus Thermincola and the family
of the Peptococcaceae, respectively (table 7.1 & Table A.17). Not surprisingly, the representative
sequence of OTU624837510 is found to be identical to the 16S rRNA gene of MAG 9 from the original
bioreactor. Additionally, OTU717462002 correlated well with the progression of stage 2 to 3. It was
identified as a member of the Rhodocyclaceae and taxonomically identical to MAG 6. We further
found significant matches between the 16S sequences of another seven of the selected MAGs and of the
apparently corresponding OTUs from the succession experiment (all 100 % identity, Table A.12).

Table 7.1: Taxonomic classification of selected members of the microbial communities in the bioreactor
and in the cultures of the succession experiment.

OTUs Phylum Class Order Family Genus Species
OTU624837510 Firmicutes Clostridia Clostridiales Peptococcaceae Thermincola unclassified_Thermincola
OTU685366684 Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas_aeruginosa
OTU717462002 Proteobacteria Betaproteobacteria Rhodocyclales Rhodocyclaceae unclassified_Rhodocyclaceae unclassified_Rodocyclaceae
OTU91680185 Firmicutes Clostridia Clostridiales Peptococcaceae Thermincola unclassified_Thermincola

MAGs Phylum Class Order Family Genus Species
1 Chloroflexota Anaerolineae Anaerolineales envOPS12 UBA7227 UBA7227 sp002473085
3 Planctomycetota Brocadiae Brocadiales Brocadiaceae Kuenenia
5 Chloroflexota Anaerolineae Anaerolineales envOPS12 OLB14
6 Proteobacteria Gammaproteobacteria Burkholderiales Rhodocyclaceae UTPRO2 UTPRO2 sp002840845
9 Firmicutes Thermincolia Thermincolales UBA2595

18 Bacteroidota Bacteroidia Flavobacteriales koll-22
20 Bacteroidota Ignavibacteria Ignavibacteriales Ignavibacteriaceae

Upper table) Taxonomy assignment of strongly correlated OTUs. The selection was based on random
forest variable importance and PERMANOVA analysis. Bottom table) The dominant MAGs in the
microbial community of the bioreactor. Note that OTU624837510 from the succession experiment and
MAG 9 from the bioreactor are marked in grey as their 16S rRNA sequences are identical.
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Figure 7.3: Progression of benzene degradation in time during the succession experiment.

●
●
●

●●●●

●●●●●●●● ●●
●●●●● ●●●●●● ●●●● ●● ●●● ●●

7

8

0 10 20 30
Time (Days)

N
itr

at
e 

(m
M

)

a ●
●
●
●●●●

●●●● ●●● ●● ●
● ●●● ●● ●● ●●●●●●●● ●●●●●●

7

8

0.0 0.2 0.4 0.6 0.8
Nitrite (mM)

N
itr

at
e 

(m
M

)

b

●

●

●

●
●●●

●

●

●

●●

●

●

●
●

●

●

●

●●
●

●●

●●

●●

●

●

●

●

●
●

●
●●

●●

1e+04

1e+05

1e+06

0 10 20 30
Time (Days)

ce
lls

 p
er

 m
L

c

0

40

80

120

0.0 0.2 0.4 0.6 0.8
Nitrite (mM)

A
ci

ds
 +

 V
ita

m
in

s 
(p

M
)

B
enzene (µ

M
)

d

0.025
0.050
0.075
0.100
0.125

Benzene (mM)

Culture stage 

● Stage 1
Stage 2
Stage 3

Carbon source

Acids
Benzene
Vitamins

Stage 1

Stage 2

Stage 3

Data analyses of cultures sampled at different time points after inoculation. a) Decrease of the nitrate
and benzene concentrations. Stages are separated by the grey lines and explained in the text. b) Re-
lationships between the onset of benzene degradation, nitrate and nitrite levels and culture stage. The
dashed line indicates the average of the measured starting concentration of nitrate. The sloped grey line
indicates a stoichiometrical (1:1) ratio of consumption and production of nitrate and nitrite. The inter-
cept of this line was chosen by eye. Note that the culture stage and benzene concentration change only
above a nitrite concentration of 0.5 mM or a nitrate concentration below 7.3 mM. c) Correlations of cell
density, stage and benzene concentration. Data points are jittered relative to the time axis. d) Relation
between acids (nicotinic, pantothenic and para-aminobenzoic acids), vitamins (biotin and vitamin B12)
and benzene consumption with accompanying nitrite levels (Figure A.60 for detailed view on each car-
bon source). The functions were fitted with a generalized additive model with integrated smoothness
estimation. Acids and vitamins were additives in the original media. Numbers and increments of left
and right y-axis are the same. Note the initial consumption of acids followed by vitamins, only after
which benzene consumption starts. The sudden drop in the fitted benzene consumption plot coincides
with the decrease in nitrite production in stage 2 (Figure A.61 for details).

7.3. RESULTS 116



Figure 7.4: Peptococcaceae drive changes of the community composition and the progression of ben-
zene degradation.
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7.4 Discussion

Here we applied a genome-centric metagenomics combined with metatranscriptomics approach to ob-
tained insights into the community diversity, structure, function and dynamics of an anaerobic microbial
community that developed in a bioreactor during 15 years with benzene as main source of carbon and
free energy and nitrate as electron acceptor. In addition, the feed contains some vitamins as minor car-
bon source and ammonium as minor free energy source. The metabolic potential and gene expression
activity of the MAGs that make part of the microbial community suggest niche partitioning [84] with
seven representative dominant members, all of which we will discuss below. We hypothesize that the
organisms represented by those MAGs interact with each other via syntrophy, scavenging, predation or
even cheating (fig. 7.5). Maintenance of and interactions within this relatively complex microbial com-
munity may be envisaged in this type of bioreactor where a continuous flow system is in contact with
the biofilm. As such, it may host species that grow at much lower rates than the dilution rate [407, 433].
Also, the biofilm may have a high potential for spatial heterogeneity, further contributing to a higher
biodiversity [434, 435]. In addition, it may confer functional stability since it can shield important func-
tional groups from disturbances and as such may be less prone to invasion by taxa that could interfere
with community functioning [433, 436, 437]. The high biodiversity sustained in the bioreactor over
such long timescales ensures metabolic plasticity of the microbial community, which is important for
adaptive responses to environmental changes such as the supply of electron donors, electron acceptors,
or nutrients. Indeed, the same consortium was shown to readily use iron(III) or sulfate instead of nitrate
as the electron acceptor for benzene degradation [407].

We found the highest transcription activity of most of the community members in the biofilm,
while only four members of the community were shown to be more active in the liquid phase. Our
findings show that only two members of the community are directly involved in the degradation of
benzene. These are members of the Rhodocyclaceae (MAG 6) and of the Peptococcaceae (MAG 9),
the latter of which is the highest active in expressing genes for benzene metabolism. The member of
the Rhodocyclaceae was found to be more active in the biofilm as compared to the liquid phase. The
member of the Peptococcaceae on the other hand is one of the four species that is more active in the
liquid phase. In line with this observation is the high expression levels of genes encoding the flagel-
lar system, suggesting that Peptococcaceae (MAG 9) is actively moving. Additionally, fig. 7.1b and
fig. 7.2c shows that the two primary consumers of benzene are significantly different from each other
in their overall potential functionality. We, therefore, suggest niche partitioning for these two benzene
degrading organisms. It was shown previously that a member of the Peptococcaceae was an important
member of the anaerobic benzene degrading community [407, 412, 411, 426, 438]. Our data confirm
that hypothesis and we postulate that a member of the Peptococcaceae is one of the primary benzene
consumers with benzoate/hydroxybenzene, benzoyl-CoA and hydroxypimelyl-CoA as intermediates.
To our knowledge, there are no reports on the isolation of a member of the Peptococcaceae with a sim-
ilar type of metabolism. In our study, we provided an initial characterization of such an uncultivable
organism by exploration of MAG 9.

Some members of the Burkholderiales (MAGs 19, 25, 47 and 68) were also classified as benzene
consumers. We noticed that they have the potential to make enzymes for degradation of benzoate
and hydroxybenzene, two intermediates of benzene degradation, which may diffuse out of the primary
consumers and become available to other members [412]. Burkholderiales were described as impor-
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Figure 7.5: Schematic representation of the anaerobic benzene degrading microbial community in a
15-years old bioreactor, highlighting the dominant niches with their hypothetical interactions.
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tant species in enrichment cultures of anaerobic benzene-degrading microcosms and were suggested
to use the methylation pathway for anaerobic benzene activation [407, 439, 440]. In our study, we
found expression of genes encoding enzymes for benzene degradation that typically combine anaero-
bic steps with aerobic ones, one of which includes oxygenation to convert benzoyl-CoA to acetyl-CoA
and succinyl-CoA. This may seem surprising for an anoxic culture, but the explanation might well be
that oxygen is produced locally. Indeed, such an incident production of oxygen has been observed
in the anaerobic benzene-degrading microbial community in a previous study (Figure A.63) [411].
We hypothesize that such production is achieved by certain species that express a nitric oxide dis-
mutase (NOD), and which may come available to other members of the community. The presence
of at least two species that can make NODs in our culture is convincing as their relevant protein se-
quences show the typical characteristics of a NOD (Figure A.63). We envisage the oxygen producers in
close proximity of the oxygen consuming members resulting in very low steady state levels of oxygen.
We further noticed that a gene encoding protocatechuate 4,5-dioxygenase is highly expressed in two
different β-proteobacterium (MAGs 19 and 68, successively). The corresponding enzyme catalyzes
the oxygen-dependent ring opening of 3,4-dihydroxybenzoate to yield 4-carboxy-2-hydroxymuconate
semialdehyde. This observation adds weight to the suggestion that there is local oxygen production
in the bioreactor that allows these two species to degrade dihydroxybenzoate aerobically. Moreover,
they have also high levels of mRNA encoding benzoyl-CoA oxygenase, which is an oxygen-dependent
key enzyme in one of the central branches of benzene degradation. They share this property with yet
another three MAGs, 36, 47 and 56. However, despite the precautions [407] we cannot fully exclude
the possibility of oxygen contamination.

Other dominant members are exemplified by MAGs 1 and 5 (Chloroflexi), MAGs 18 (Bacteroides)
and 20 (Ignavibacterium). Chloroflexi are detected in a wide range of anaerobic habitats where they
are highly abundant and seem to play an important role in formation of flocs and biofilms [441, 442,
443]. In our culture, all Chloroflexi showed significantly higher expression levels in the biofilm as
opposed to the liquid phase. Without exception, they all showed relatively high levels of mRNAs
encoding extracellular peptidases, solute binding proteins and specific ABC-type transporters. This
observation suggests that they grow by cutting extracellular peptides and proteinaceous polymers into
smaller molecules that can be transported into the cell to use them as carbon and free energy sources.
Other species (MAGs 12 and 49) appear to focus on the synthesis of enzymes for fatty acids uptake and
metabolism (Section A.4.17). We therefore speculate that cell lysis of other members of the community
may result in the release of these macromolecules in the bioreactor. Such lysis may occur by bacterial
members of the community that express at least one of the types II, III or VI secretion systems, the genes
and mRNAs of which we identified in some of the MAGs (Figure A.39). Secretion systems induce cell
death by the introduction of toxins and other effector molecules in the host cell [444, 445, 446]. Perhaps
this type of predation is another strategy for some members of the community to occupy their own niche
and to survive as secondary consumers. In other studies, members from the Bacteroidetes were regarded
as putative biomass scavengers during syntrophic breakdown of benzene and to express genes for a type
VI secretion system [427, 447]. The latter does not seem to be the case for the dominant Bacteroides
in our bioreactor (MAG 18) as the annotation pipeline did not yield a secretion system for this MAG.
Instead, it rather behaves as the Chloroflexi in the sense that it expresses extracellular peptidases and
peptide uptake systems. Moreover, it expresses enzymes for the anaerobic degradation of benzoyl-CoA.
The reason for the dominance of MAG 20 is unknown.
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Another important niche within the community is occupied by a member of the Planctomycetes
(MAG 3), which is an autotrophic organism that uses anammox for free energy transduction and carbon
fixation [448]. Genes encoding subunits of the key enzyme of anammox, hydrazine synthase, show
a high similarity with those from Candidatus Kuenenia stuttgartiensis [448]. As such, it is unique in
its choice for the free energy source. This autotrophic species is known to have a low specific growth
rate but it is maintained in the bioreactor by nestling in the biofilm as judged by the allocated expres-
sion activity. Then we noticed a few other MAGs with the potential to occupy yet other niches using
unique types of metabolism. We found upregulated expression of a cluster of genes encoding enzymes
for methylamine metabolism in MAG 16, which belongs to the α-proteobacteria. Methylamine is a
C1-compound that is formed during decomposition of proteins and may be taken up specifically by
this methylotrophic organisms to use it as nitrogen, carbon and free energy source [449]. Another α-
proteobacteria (MAG 4) has high levels of mRNA expressed from a cluster of genes encoding enzymes
for formate metabolism.

The succession experiment and downstream correlation analyses not only identified the drivers of
the community, but also the assignment of 3 different culture stages with regard to benzene and nitrate
consumption rates. Only the cultures that make part of stage 2 or stage 3 reduce nitrate and degrade
benzene, in parallel with a lower production rate of nitrite. We postulate that stage 1 is dominated by
consumption of the acids and vitamins along with an unbalanced reduction of nitrate into nitrite and
further. We then investigated which OTUs are positively correlated with each of the three culture stages,
which could cause the transition of the community composition. The OTUs belonging to the family of
Peptococcaceae showed the strongest correlation, followed by an OTU that belongs to the family of
Rhodocyclaceae. These two are also the most likely primary consumers of benzene in the bioreactor.
A partial confirmation of this identity is that the 16S rRNA sequence of the most abundant OTU was
found to be identical to the one of the Peptococcaceae in MAG 9 from the original bioreactor.

Overall, our integrative systems ecology approach revealed that many different niches are occupied
in the anoxic benzene degrading bioreactor. We hypothesize that niche partitioning in turn results in
a community with a relatively high biodiversity (fig. 7.5 a). Only a few species appear to metabolize
benzene or breakdown products thereof. Yet, a wide range of microorganisms do not seem to feed on
benzene but most likely on intermediates of benzene degradation, on biomolecules of microbial necro-
mass, or autotrophically with ammonium as free energy source. As a result, most of the community
members make up a specialized food web with different trophic levels despite the limited resources.

7.5 Methods

7.5.1 Microbial community in a fixed film bioreactor

Metagenomics sequencing

We selected three samples to use for total DNA high-throughput sequencing. Two of these samples were
from brown biofilm (denoted Biofilm 3 and Biofilm 4) collected directly from the bioreactor (Section
A.4.9 for details) and a third sample (denoted BATCH) was produced by pooling equimolar concen-
tration of DNA from batch cultures prepared in triplicate and inoculated separately. The metagenome
libraries using Biofilm 3, Biofilm 4 and BATCH samples were prepared using total DNA extraction for
subsequent cluster generation and DNA sequencing using the low-throughput Illumina TruSeq DNA
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Sample preparation Kit (Illumina, San Diego, California, USA) following instructions from the manu-
facturer. Later, the libraries were analyzed in a Bioanalyzer 2100 (Agilent Technologies, Santa Clara,
CA, USA) and diluted to approximately 8 pM with the addition of 5% PhiX and sequenced using two
runs in a Illumina HiSeq 2500 platform (Illumina, San Diego, California, USA) according to the in-
structions of the manufacturer. The BATCH metagenome was sequenced at the user sequencer facility
at the VUmc (Amsterdam, The Netherlands). Biofilm 3 and Biofilm 4 metagenomes were sequenced at
GATC-Biotech, Konstanz, Germany.

Metagenomics analysis

Adapter cutting and quality assessment were performed by Trim Galore v0.4.0 [194], a wrapper for Cu-
tadapt [180] and FastQC [193]. Bases with a Phred score below 20 were cut off. The paired option was
applied with the standard length cut-off of 20 bases, removing a read pair when one or both of the reads
is shorter than 20 bases after quality trimming. We used the most diverse and deeply sequenced sample
Biofilm 4 for initial assembly. Reads passing the quality assessment were assembled with IDBA_UD
v1.1.1 under standard parameters for short reads with the exception that the maximum kmer size was set
at 160 [195]. Contigs resulting from the assembly were represented by 93.96% of the total reads and
were placed into 111 MAGs with MaxBin v2.1.1 under standard settings and using quality assessed
reads from three sequenced samples [450]. MaxBin is dependant on several programs of which the
following versions were installed: FragGeneScan v1.20 [451], Bowtie2 v2.2.6 [452] and HMMER3
v3.1b1 [453]. For each MAG, genes were predicted with Prodigal v2.6.2 for single genome parameteri-
zation [330], followed by functional annotation of the amino acid sequences of eggNOG-mapper v1.0.3
[395]. After a first round of downstream analysis, we refined the MAGs derived from MaxBin using the
Anvi’o v6.1 metagenomics workflow [212]. From the refined collection we kept 51 MAGs with com-
pletion above 90% and redundancy less than 10%, using the Anvi’o reported scores. Exceptions were
made on MAGs 13, 35, 37, 58, and 59, which initially passed the completion/redundancy criteria but
later were found highly mixed based on taxonomical classification of their contigs during the manual
refinement step. Therefore, they were excluded for further analysis. Differently, MAG 3 (completion:
98.5 %, redundancy: 12.6 %) was included for further analysis, leaving finally 47 high-quality MAGs.
Overall, from the reads aligned to the final assembly, 80% is represented in all the reconstructed MAGs,
while 48.5% is represented by the final 47 selected MAGs and 30.5% is represented by the 7 dominant
MAGs. The final taxonomy was assigned with GTDB-Tk v1.0.2 [454], as well with alignment search
of the rRNAs genes identified in the MAGs (Section A.4.10 for details). From the eggNOG annota-
tions, we extracted the KEGG orthology [233] for each MAG and a feature matrix K was constructed
of dimensions k ×m where m is the number of MAGs and k is the number of KOs. The entries Kqj

are 1 if the KO q is present in MAG j and 0 otherwise. Overall 6449 unique KOs was found between
the selected MAGs. We used the matrix K as an measure of indication of potential functionality for the
microbial community.

Multi-omics analysis

We used in total five out of six metatranscriptomes previously obtained from bioreactor samples and
described by our collaborators [411, 412] (Section A.4.11 for details). All five samples were gathered
by scraping off a confined area of thick parts of the biofilm or thin ones, originally referred to as brown
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and white biofilm, respectively. The sixth sample was a partial mixture of both liquid and biofilm phases
and not included for further analyses. The two brown biofilm samples (B3 and B4) were estimated to
contain around 80% biomass, while the white biofilm samples (E1, E2 and E3) contained around 10%.
Brown and white biofilm samples were therefore regarded as biofilm and liquid phase, respectively. The
mRNA reads were mapped against the predicted genes of each MAG using bowtie v2.3.4.1, samtools
v1.2.1 [211], and assigned together with eggNOG annotations. The DNA Abundance of MAGs was
calculated by Anvi’o workflow [212]. For RNA Abundance (Equations (7.1) and (7.2)) we denoted
each MAG by j ∈ {1 . . .m}, each gene in MAG j by i ∈ {1 . . . nj} and each sample by s ∈ {1 . . . 5}
where 1 . . . 2 are samples from the biofilm and 3 . . . 5 are samples from the liquid phase. Then, we
defined rjis as mRNA read counts per MAG, gene and sample, and Trs as the total mRNA read count
of a sample. The matrix RNA Abundancejp resulted from the concatenation of RNA Abundance of
the column vectors of biofilm and liquid: Bj and Lj respectively.

Trs =

m∑
j=1

nj∑
i=1

rjis, Bj =

nj∑
i=1

∑2
s=1 rjis∑2
s=1 Trs

× 106, Lj =

nj∑
i=1

∑5
s=3 rjis∑5
s=3 Trs

× 106 (7.1)

RNA Abundancejp = [BjLj ] (7.2)

where p indicates the phase, biofilm or liquid (p ∈ {b, l}). To obtain a final measure of potential activity,
we normalized the RNA Abundance by the total genome size per MAG into specific RNA Abundance
(Equation (7.3)). Therefore, if Gj correspond to genome size of a MAG j and the overline symbol (like
G) indicates the average taken over all MAGs (similarly Tr and Mr indicate averages below), then:

G =

∑ m
j=1Gj

m
, specific RNA Abundancejp =

RNA Abundancejp
Gj

×G (7.3)

To calculate the percentage of active ORFs ratio, we consider an ORF to be potential active if the
average value of the mapped mRNA reads across all samples was equal or bigger than 1. For the dif-
ferential transcribed analysis of the MAGs we calculated matrix ∆RNA Abundancejs (Equation (7.4))
for all samples. We donated r and Tr same as above and Mr as the total mRNAs per MAG, then:

Mrj =

nj∑
i=1

5∑
s=1

rjis, r
′
jis =

rjis
Trs
× Tr,∆RNA Abundancejs =

nj∑
i=1

r′jis
Mrj

×Mr (7.4)

Linear modeling, empirical Bayes moderation and multiple testing with Benjamini-Hochberg method
were used to validate the differences at mRNA expression [455, 456]. For the analysis of DNA, RNA,
∆RNA and specific RNA abundance the log2 scale was used. We used R-packages apcluster, uwot and
boruta for downstream clustering, dimensionality reduction and importance feature ranking analysis
respectively [199, 200, 457, 458, 285, 286] (Section A.4.12 for details). Also, R packages KEGGREST
were used to get KEGG pathway information, ggplot2, ggrepel for visualization and ShortRead for
sequencing processing [206, 459, 460, 461]. Schematic representations and figures was created and
polished respectively in Inkscape.
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Targeted analysis on anaerobic benzene metabolism

To investigate anaerobic benzene degradation we devised the theoretical peripheral and central metabolism
based on literature information (Section A.4.13, Figure A.40 & Figure A.41 for details). For our analy-
sis we simplified the theoretical scheme by selecting the KEGG reactions and the corresponding KOs.
This led to 12 custom-made pathways (Section A.4.14 for details). We calculated a specific RNA abun-
dance per gene i and MAG j as in Equation (7.3) (but without averaging over the genes) and added this
value to each entry of the K matrix (see "Metagenomics analysis" above), when gene i was assigned to
KO q. The resulting matrix we denote by KT (Equation (7.5)):

KTqj = Kqj + 〈 specific RNA Abundancei〉j (7.5)

KT was used for further analysis on global metabolism, structural components, construct the custom-
made pathway selections and visualization of graph/networks [462] (Section A.4.14 for details). We
used classification scheme on the custom-made pathways (Section A.4.18 for details) to assign MAGs
as potential primary consumer (High/Medium/Low/None classes) of benzene. Finally, we performed
custom searches on functions of interest with blast+ [463]. To do so, we used "makeblastdb" and
"blastp" with default parameterization, custom filtering was applied (identity range % > (50 - 80) &
alignment length above half of targets sequence length) to obtain the best hits.

7.5.2 Succession of microbial communities

Experimental design

A succession study in batch cultures was carried out to determine important species as drivers for
anaerobic benzene degradation. Before performing the succession experiment the benzene-degrading
microbial community from the bioreactor was adapted to batch growth as follows. Under anoxic con-
ditions, 0.5 mL of the original bioreactors culture was inoculated in 100 mL serum bottles containing
50 mL of the same phosphate and bicarbonate-buffered medium as used in the bioreactor, and contain-
ing 100 µM benzene and excess of nitrate (4.7 mM) as electron acceptor (Section A.4.1 for medium
composition). After benzene was consumed (Section A.4.2 for benzene determination), the medium
was spiked again with 100 µM benzene. Once three times benzene completely depleted, the culture
was transferred to fresh medium under anoxic conditions (Section A.4.1). The succession experiments
were performed after three such transfers (over a course of 6 months in total) in 50 mL batch culture.
The medium used in the succession experiment was the same medium as in [407]. It consists of a
mixture of basal salt medium, phosphate solution, carbonate solution, trace elements solution, vitamin
solution, nitrate as electron acceptor and 100 µM benzene. The serum bottles had a 90:10 N2:CO2 (v/v)
atmosphere, and were sealed with Viton stoppers and capped with aluminum crimps. The cultures were
incubated at 25◦C in the dark (Section A.4.1 for details). For the succession experiment, a total of 96
anoxic serum bottles with 100 µM benzene were inoculated with 2 × 104 cells per mL at the same
time. We determined cell numbers by separating cell aggregates by gentle sonication (3 x 30 sec at 15
microns of amplitude with 30 sec intervals each), followed by cell staining using SYBR-Green II, and
by counting cells in a Accuri C6 Flow Cytometer System (Accuri Cytometers, Ltd., Cambridge, UK)
(Section A.4.3 for details). The following cultivation and counting controls were performed: (i) no cells
added, (ii) no benzene added and (iii) no vitamins added. We prepared five individual bottles for each
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control (15 in total). The cultures (including the 15 controls) were set up in the 30 mL serum bottles
with 20 mL medium. All other conditions kept the same as the adaptation step (mentioned above).
A pilot experiment was performed to determine general trends of benzene consumption over time by
taking quadruplicate samples under the same conditions of the final succession experiment. Based on
the pilot experiment, we inoculated 96 bottles from which we sacrificed 12 bottles each at time points
2h, 7 days, 14 days, 18 days, 22 days, 26 days, 30 days and 34 days after inoculation. The controls
were sampled 34 days after the beginning of the experiment. Total DNA was extracted from each of the
96 samples and the 5 controls using a modified CTAB/phenol-chloroform described previously [464]
(Section A.4.4 for details). DNA from 9 bottles at time point 2h were too low, leaving the DNA from 87
experimental samples for further analyses. The DNA was used for 16S rRNA gene amplicon sequenc-
ing including negative controls (i.e. no addition of template DNA to the PCR). We analyzed all samples
when sacrificed for benzene by gas chromatography and cell number by flow cytometry (Section A.4.2,
Section A.4.3 & Table A.13 for details). We also filtered two times 2 mL of each cell suspension through
0.22 µm nitrocellulose filter membranes (Merck, Darmstadt, Germany). One of the filtrates was used to
determine nitrate and nitrite concentrations by capilary electrophoresis (Section A.4.5 for details) and
targeted metabolomics with the corresponding controls. Targeted metabolomics was used to measure
the concentration of the different vitamins used in the medium, including biotin and vitamin B12, and
potential intermediates of anaerobic degradation benzene degradation by LC-MS/MS (Section A.4.6 &
Section A.4.7 for details).

7.5.3 16S rRNA gene high-throughput sequencing

The 16S rRNA V3-V4 region of the samples from the succession experiment was sequenced using
the primers S-D-Bact-0341-b-S-17 and S-D-Bact-0785-a-A-21 [266]. To minimize PCR bias, we per-
formed PCR reactions in triplicate for each sample. Due to low cell biomass each 25 µL reaction
contained 0.05 µg of DNA (Section A.4.8 for details). Amplicons from all samples were pooled in
equimolar concentrations into one composite sample and were paired-end sequenced at the Vrije Uni-
versiteit Amsterdam Medical Center (Amsterdam, The Netherlands) on a MiSeq Desktop Sequencer
with a 600-cycle MiSeq Reagent Kit v3 (Illumina, San Diego, California, USA) following instructions
of the manufacturer. High-throughput sequencing raw data were demultiplexed and processed using
a modified version of the Brazilian Microbiome Project 16S rRNA profiling analysis pipeline [465]
(Section A.4.8 for details). To estimate the total number of species present at the start of the succession
experiment we pooled all the sacrificed samples together and identified 192 OTUs that shared more
than 97.0% sequence similarity. The OTU abundance was normalized to the total equivalent of cell
numbers using the estimated 16S copy number per cell for each OTU. To do so, the ribosomal RNA
operon copy number database, hereafter rrnDB [466] was used. These estimates were run using RDP
Classifier version 2.10.1 and RDP training set No. 10 incorporating 16S copy number data from the
downloadable pan-taxa tables of rrnDB version 4.2.3 [467]. The taxonomic assignment for each OTU
(Section A.4.8 for details) was used to link the correspondent rrnDB entry. Further, we normalize the
data to the equivalent cell number per mL (OTU-specific cell densities) using the flow cytometry cell
counts [468]. Selection of important OTUs, which correlated with the three stages of the culture devel-
opment, was performed with random forest implementation of R-package party [469]. We used default
parameters for conditional variable importance, which uses permutation on mean decrease in accuracy.
For that, 1000 trees and 10 numbers of random sampling were set. Also, we used R-package vegan im-
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plementation of Permutational Multivariate Analysis of Variance (PERMANOVA) on 999 permutations
[470, 471, 472].
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Chapter 8

Epilogue

8.1 Summary

This thesis started with a reminiscence of a long journey - the 4 billion years old journey of Life.
From the day we started observing microbial Life it was inevitable to see its dominance. In Chapter
1, the importance to study microbes in the natural context of complex systems of communities was
highlighted. The need to better understand the mechanisms that govern biodiversity was discussed by
revisiting two of the major events of evolution, namely the emergence of eukaryotes and of multicellular
organisms. Furthermore, examples were given on the remarkable abilities of microbes to adapt, and
caution was raised about conclusions drawn from studies with model organisms growing in isolation.
Subsequently, it was proposed that research on microbial communities should play a central role in
elucidating old debates in ecology and evolution, for example concerning the evolution of cooperation.
To facilitate such attempts a gap between Biology of microbial Life and Microbiology should first
be bridged. For instance, the re-evaluation of the definition of species should include the extensive
role of horizontal gene transfer between microbes. The common desire to make microbiology a more
quantitative science led to the discussion of promising recent developments and approaches which aim
to derive universal laws, principles and assembly rules for microbial communities. Finally, the transition
of biology into the age of big data was discussed and the usage of data science accompanied by -omics
approaches was emphasized as a way to move forward. This was the route chosen in this thesis.

In Chapters 2, 3 and 5 we studied microbes and microbial communities responsible for the produc-
tion of wine from grape must. Grapevine (Vitis vinifera) is thought to be one of the first domesticated
fruit crops. Its domestication started with the origin of wine-making, which dates back at 6,000 BC
[473]. Although this time frame can be considered short in terms of evolution it was enough to cause
a number of substantial changes even in the phenotype of the plant [474, 475]. During wine-making
microbes will encounter a series of different sequential stresses, namely the initial low pH and high
osmolarity, followed by the increase of ethanol concentration and temperature and finally the depletion
of sugars and oxygen [476]. The anticipation of wine microbes to those stresses was shown to be an
evolutionary adaptation [476].

In Chapter 2 we studied spontaneous variation of the microbial community composition during
spontaneous in vitro wine fermentation of riesling must. We made the following observations: (i) There
is a general influence of the vineyard on microbial composition with a striking differential abundance of
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Metschnikowia. We proposed that a putative iron depletion pathway in Metschnikowia might serve as a
biocontrol agent against bacteria and in turn could help Saccharomyces to dominate the fermentation.
(ii) There is a decrease in biodiversity during alcoholic fermentation. Unexpectedly, the fraction of
Micrococcus increased in one vineyard during alcoholic fermentation. Therefore, we proposed that
bacteria might sit-and-wait until Saccharomyces activity slows down. (iii) There is a relation between
stuck fermentations and the abundance of Starmerella, suggesting that this was because fructophilic
Starmerella, rather than gluconophilic Saccharomyces, dominated these fermentations.

In Chapter 3, we continued to explore microbial communities during wine fermentation using
metagenomes. Specifically, the role of the adjunct L. plantarum in malolactic conversion of indus-
trial wine fermentations was investigated and this species was found to thrive better on white than on
red wine fermentations. We obtained experimental evidence to support the hypothesis that a successful
introduction of this species in a community was in the case of wine determined by the composition of
the must, and possibly by the presence of grape skins during fermentation. Moreover, L. plantarum had
the largest number of phosphotransferase systems among the bacteria observed in the wine communi-
ties. Also, L. plantarum together with Pantoea, Erwinia, Asaia, Gluconobacter and Komagataeibacter
genera had the highest number of genes involved in amino acids biosynthesis. The effect of the later
five genera in wine making remains still largely unknown.

The role of non-Saccharomyces yeasts during wine fermentation is another open question in wine-
making [477]. L. thermotolerans is such a yeast which converts the consumed sugars partly to lactic
acid instead of ethanol [478]. To help explore this unique property, in chapter 5 a simple experimen-
tal coloring method is presented which distinguishes colonies of the yeasts L. thermotolerans and S.
cerevisiae on agar media. It does so by the addition of bromocresol purple which induces Lachancea
colonies to develop a brown color, whereas Saccharomyces colonies remain white. The method can be
applied in assessing the growth dynamics of these yeasts in co-cultures.

Finally, we also studied cinnamoyl esterase activity in Oenococcus Oeni. O. Oeni is responsible
for malolactic conversion in the majority of wine fermentations. From the analysis of five sequenced
O. Oeni genomes, three of which were cinnamoyl esterase positive, we did not find any significant
indication in the sequences of the corresponding esterase genes, their upstream regions and in putative
transporters that could explain this difference. Therefore, we suggest to use transcriptomics data to
elucidate the different cinnamoyl esterase activity [479]. This work is not included in this thesis.

Another microbial community of a fermented beverage was studied in Chapter 3 which is respon-
sible for the fermentation of milk to kefir. To produce kefir a simple serial batch transfer of kefir grains
is sufficient. Kefir grains consist of a complex microbial community embedded in a polysaccharide
matrix. The metabolic capacities of these communities which consist of dozens of species are largely
elusive [239]. Therefore we studied a kefir community using genome sequences of isolated and se-
quenced Bacteria representative strains. We found that L. kefiranofaciens, a dominant organism in kefir,
stands out among the lactobacilli because it potentially has a high number of amino acid auxotrophies.
Also, the only organism in kefir that had genes for flagella assembly and chemotaxis was Acetobacter.
Since Acetobacter is a strict aerobe this observation would be in agreement with the hypothesis that
they use chemotaxis to move on oxygen gradients, and possibly also towards gradients of their carbon-
and energy sources. The presence of flagella in Acetobacter was experimentally confirmed.

Moving away from microbial communities related to fermented beverages towards human micro-
biomes we studied a microbial community of urinary tract infection. We focused on the interactions
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between microbial community members, although the evolutionary relationship between such commu-
nities and their host is also highly interesting [480, 481]. In chapter 4 the computational framework
from Chapter 3 was further expanded to study pairwise interactions between microbes using measures
based on genes involved in metabolic processes. In case of microbes from the urinary tract a number of
putative metabolic interactions were identified that could explain the experimentally obtained pairwise
growth effects. We found that members of Enterococcus may be complemented in their metabolism
by the other members of the community. On the other hand, when applying the method to the gut
microbiome no putative metabolic interactions could be linked to patterns of species co-occurrence.

Cases such as L. kefiranofaciens in kefir and Enterococcus genus found in urinary tract infections
point to reductive genomic evolution where the loss of functional genes may provide a gain in fitness
that outweighs the cost. The Black Queen Hypothesis proposes this idea [482], and appears highly
relevant for the future study of microbial communities. This point of view is also supported by Gould
[483] and provides an alternative route for evolutionary change, different from the one presented at
the start of this thesis, which focuses on the trend that organisms seem to become more complex and
sophisticated over time.

In chapters 6 and 7 we focused on two ecosystems with relatively constant conditions, namely a
microbial community from a cave community and a microbial community maintained for 15 years in
a controlled bioreactor. In those cases, we expect abiotic factors to apply constant selective forces and
a much clearer adaptation of the entire microbial community than in a dynamic environment. In both
cases we observed a higher species diversity than expected, and a nested hierarchy of interdependence
between one or few primary producers of cellular biomass and the rest of the community.

In chapter 6 we investigated the metabolism of a novel Mycobacterium species, which was found
to be dominant in a microbial community residing in an acidic biofilm attached to the wall of a sulfur
cave in Romania. This Mycobacterium species expresses a full suite of enzymes involved in methan-
otrophic growth. Growth experiments using methane as sole carbon- and free energy source verified the
methanotrophic niche of this species. To our knowledge, this is the first report about a methanotrophic
Mycobacterium of Actinobacteria, a type of metabolism that up to now was only observed in some
members of the Proteobacteria and Verrucomicrobia. As methane is one of the most abundant compo-
nents of the volcanic gases we suggest that this methanotrophic Mycobacterium species is the primary
producer within this biofilm and that its biomass or secondary metabolites are consumed by the rest of
the community.

In Chapter 7 a key question in microbial ecology is asked - how large biodiversity can be maintained
on a few resources. To address this question a highly diverse microbial community was investigated,
which grew for 15 years in an anoxic bioreactor on benzene as the main carbon and free energy source
and nitrate as an electron acceptor. We found evidence that many different niches are present and
while only a few community members seem to degrade benzene, the majority of species seems to
feed on metabolic left-overs, microbial necromass or even autotrophically using anaerobic ammonium
oxidation for free energy transduction and carbon fixation. An additional succession experiment verified
that the same few community members are the actual drivers of benzene degradation. We propose
that high species richness is maintained and the complexity of a natural community is stabilized in
a controlled environment by niche partitioning and the interdependencies between the few benzene
degraders and the rest of the community members. The result is a community that resembles a food
web with different trophic levels where its organization in a biofilm is a crucial component to the
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maintenance of such complexity.

8.2 Outlook

To epitomize, this thesis discussed many microbial communities and ecosystems instead of focusing
on one - a decision that can be viewed as a trade-off. Similarly, microbes constantly face multiple
trade-offs, for example the evolution towards a specialized or a generalized niche in a multi-species
community [484, 485, 486] as well as the evolution towards faster growth rate or higher stress resistance
in an isogenic population [487, 488] and many more [489, 490, 491]. In a view of our decision, we
have not followed many newly emerged questions which brings opportunity for future research. As
an example, we could continue the discoveries presented in Chapters 3 with a systematic investigation
of the compounds present in grape skins and seeds such as polyphenols which have been shown to be
responsible for the inhibition of microbial growth [492]. To which degree these compounds contribute
to the total microbial community composition during wine-making remains an open question. Some
of these compounds could be used as natural bio-control agent during wine-making as an alternative
to the reference method that uses sulfites[493]. My perspective of this thesis, stated with the following
metaphor, is "of looking at the whole forest instead of a single tree". On this line of thought, we can
also ask, do the same principles shape the behavior of microbial communities across the ecosystems?
This question is briefly discussed in the introduction & perspectives, summary and left open for future
research.

During this study on microbial communities, I encountered a few conceptual obstacles that can be
seen as future opportunities - an example is the application of chaos theory in microbial communities
systems [494, 495, 496]. Based on chaos, microbial community dynamics could consider unpredictable,
therefore it’s hard to say when and how will the diversity of a community change. A simple demon-
stration performed with cellular automaton simulation shown that unpredictable pattern can emerge
even when starting with a few simple rules [497]. In this context attempts at opening the black box of
predicting microbial community interactions and dynamics over time should be done with caution.

It is a common and crucial practice to investigate the effect of time on biological systems, but the
effect of space is sometimes neglected. Especially in microbial community research, recent empirical
evidences point towards a highly structured organization between microbes in space [498, 499]. These
discoveries brings many questions, for example, what is the role of the spatial organization on the inter-
actions between the individual members in microbial communities and ultimately on evolution. In this
line, I see the study of multi-species communities in biofilms as an essential endeavor to better under-
stand spatial organization, including relevant properties such as motility, sensing, and communication.
The work presented in Chapter 7 seems to me like an appropriate path to be followed in this direction.

As a final remark, I would like to point that although I was expecting many obstacles during my
scientific journey the biggest was also the most unexpected one - the challenge of overcoming the biases
of oneself as well of peers who embarked together into the journey of understanding the natural world.
I found the re-emergence of multidisciplinary research a potential solution. In this thesis, the union of
Life Sciences in particular Microbiology and Ecology with Computer Science and Statistics was proven
useful. Reaching further to Social Sciences could be the key to help us understand how did life came to
be and where do we want to be.
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Appendix A

Appendix

A.1 Chapter 2

Taxonomic and Functional Characterization of the Microbial
Community During Spontaneous in vitro Fermentation of Ries-
ling Must

A.1.1 Sample preparation

In order to test the efficiency of shotgun library construction of ferment samples, 3 shotgun library
construction methods were compared: i) BEST, a recent published single-tube library construction
method (Carøe et al., 2018); ii) a modification of BEST, Blunt End Multi Tubes protocol (BEMT); and
iii) commercial kit, NEBNext (E6070). Five ferment samples were used in this study and subsequently
fragmented to average size 300-400 bp by Bioruptor 300 (Diagenode, Belgium) using 6 cycles with
15 seconds on and90 seconds off. Three identical volume aliquots of each of the 5 ferment samples
(30µL, < 0.2 -12ng) were used for this study. Library blanks (addition of EB buffer), a positive control
of wolf DNA, and a wine sample were also included, the latter to test for effect of inhibitors that could
be expected in the ferment samples. All libraries were constructed in parallel under laminar flow hood
conditions.

A.1.2 BEST

The libraries were constructed based on the protocol of Carøe et al. (2018) with the addition ofreaction
enhancer and optimized enzyme concentrations following the protocols in Mak et al. (2017), and with
a total initial input volume of 32µL. The whole process involved end repair, adapter ligation, fill-in and
finally purification. In the adapter ligation step, 2µL of 10µM BEDC3 adapters (Carøe et al., 2018)were
added to each library. Libraries were eluted in 50µLin EBT buffer (EB buffer from Qiagen with 0.01%
Tween 20).
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A.1.3 BEMT

This protocol is a modification of the BEST protocol, incorporating a purification immediately after the
end repair step, so as to enable elevated enzyme concentrations to be used, and their subsequent efficient
removal after end repair. We hypothesized that higher enzyme concentrations as well as the additional
purification would enable more efficient library building on samples with high amounts of enzymatic
inhibitors and/or high amounts of input DNA. An initial total input volume of 36.75µL was added to the
end repair master mix, consisting of 2.5µL T4 DNA polymerase (3U/µl,NEB), 2.5µL T4 Polynucleotide
kinase (PNK 10U/ul, NEB), 0.5µL dNTPs (25mM, Invitrogen), 5µl 10X T4 DNA ligase buffer (NEB)
and 2.75µL reaction enhancer. The reaction was incubated at 20◦C for 30 minutes, followed by a
purification using Monarch® DNA Cleanup Columns (NEB). Purification was carried out using 450µL
of modified PB buffer (Allentoft et al., 2015),the centrifuged at 6000 xg for 1 minute followed by 14000
xg for 1 minute in order to spin the PB buffer through the columns. The columns were subsequently
washed with 800µL PE buffer and spun at 10000 xg, followed by an additional spin at 17000 xg for
3 minutes. DNA was eluted in 33.8µL EBT buffer after an incubation for 15 minutes at 37 ◦C, by
spinning at 17000 ×g. For the adapter ligation step, the same amount and concentration of adapter was
used for each sample as described in the BEST section, and mixed thoroughly prior to the addition of
ligation mix. Ligation master mix for each sample consisted of 6µL 50% PEG 4000 (Sigma), 1µL T4
DNA ligase (400U/µL, NEB), 5µL 10X T4 DNA ligase buffer (NEB) and 2.2µL reaction enhancer. The
reactions were incubated at 20 ◦C for 30 minutes, followed by 65 ◦C for 10 minutes. After incubation,
the fill-in step was carried out with 1.6µl Bst 2.0 Warmstart polymerase (8U/µL, NEB), 0.4µL 25 mM
dNTPs, 2µL 10X Isothermal amplification buffer (NEB) and 6µL AccuGene molecular biology water
(Lonza), followed by an incubation at 65◦C for 15 minutes and 80◦C for 15 minutes. Libraries were
then purified using Monarch® DNA Cleanup Columns (NEB) as before, except using 300µL PB buffer
and eluted in 50µl EBT.

A.1.4 NEBNext

Libraries were constructed using the components of a commercial kit, NEBNext DNA library prep
master mix from NEB (]E6070). In the end repair step, 42.5µL of initial input volume was mixed with
2.5µL NEBnext End Repair Enzyme Mix and 5µL NEBnext ENd Repair Reaction Buffer, followed
by an incubation at 20 ◦C for 30 minutes. Purification was as described in the BEMT protocol. DNA
was eluted in 33µL EBT buffer after an incubation for 15 minutes at 37 ◦C, before spinning at 17000
xg. Purified DNA was subsequently mixed thoroughly with the same amount of adapter as described
above, followed by 10µL 5X Quick Ligation Reaction buffer and 5µL Quick T4 DNA Ligase. The
reactions were incubated at 20 ◦C for 30 minutes, and subsequently purified with Monarch® DNA
Cleanup Columns (NEB) as described above, except using 300µL PB buffer and eluting in 42µL EBT.
Fill-in master mix contained 3µL Bst DNA polymerase and 5µL Adapter fill-in reaction buffer, and was
incubated at 65 ◦C for 20 minutes followed by 80 ◦C for 20 minutes.

A.1.5 Quantitative PCR

Quantitative real time PCR (qPCR) was performed for all libraries in 10µL reaction volumes, with 5µL
LightCycler® 480 SYBR Green I Master (Roche), 0.25µL of 10µM forward and reverse primer mix
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(IS7 & IS8, (Meyer and Kircher, 2010),1µL template of 20-fold dilution of library, and 3.75µL Accu-
Gene molecular biology water (Lonza). qPCR blanks using EBT were included. qPCR was performed
on a MX3005 qPCR machine (Agilent) with the following cycling conditions: 95◦C for 5 minutes,
followed by 40 cycles of 95◦C for 30 seconds, 60◦C for 30 seconds, and 72◦C for 7 minutes. This was
followed by incubation at 95◦C for 1 minute, 55◦C for 30 seconds, and 95◦C for 30 seconds to, produce
a dissociation curve. The values of cycle thresholds (Ct values) provided a relative measurement of
library molecules in each library.

A.1.6 Results

The qPCR results are shown in Supplementary Figure 5. Low Ct values indicate a higher number of
target molecules entering the qPCR reaction, thus higher efficiency of library construction. Efficiency in
library building did not seem to significantly differ between ferment samples, positive control, positive
control with inhibitor spiked in, andinhibitor. The ferment libraries constructed using BEMT had the
lowest mean Ct values (data not shown) while NEBNext had a slightly higher Ct values by 1 cycle
compared to the other two methods indicated lower efficiency. In the library blank, higher Ctvalues
were observed in BEMT and NEBnext which indicated a lower level of background noise, presumably
from adapter-dimers. Due to the slightly better amplification efficiency in library molecules of ferment
samples and lower risk of background noise when using BEMT, we chose this library construction
method for the main study of ferment samples. However, more in depth study will be required for a
thorough comparison among the three methods.

A.1.7 Supplementary Tables and Figures

Table A.1: Details of samples. M1 = Metabarcoding and M2 = Metagenomics

No. Sample name M1 M2
Biological
replicate

Vineyard Sampling date

1 w2a_start 2a 2 24/9/2015
2 w2a109 x 2a 2 9/10/2015
3 w2a112 x 2a 2 12/10/2015
4 w2a114 x 2a 2 14/10/2015
5 w2a120 x 2a 2 20/10/2015
6 w2a_end 2a 2 26/10/2015
7 w2a_end2 2a 2 15/12/2015
8 w2bstart 2b 2 24/9/2015
9 w2b109 x 2b 2 9/10/2015
10 w2b112 x 2b 2 12/10/2015
11 w2b114 x 2b 2 14/10/2015
12 w2b120 x 2b 2 20/10/2015
13 w2b_end 2b 2 26/10/2015
14 w2b_end 2b 2 15/12/2015
15 w3a_start 3a 3 24/9/2015
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16 w3a109 x x 3a 3 9/10/2015
17 w3a112 x x 3a 3 12/10/2015
18 w3a114 x 3a 3 14/10/2015
19 w3a120 x 3a 3 20/10/2015
20 w3a_end 3a 3 26/10/2015
21 w3a_end2 3a 3 5/11/2015
22 w3b_start 3b 3 24/9/2015
23 w3b109 x 3b 3 9/10/2015
24 w3b112 x 3b 3 12/10/2015
25 w3b114 x 3b 3 14/10/2015
26 w3b120 x 3b 3 20/10/2015
27 w3b_end 3b 3 26/10/2015
28 w3b_end2 3b 3 5/11/2015
29 w4a_start 4a 4 26/9/2015
30 w4a109 x x 4a 4 9/10/2015
31 w4a112 x x 4a 4 12/10/2015
32 w4a114 x x 4a 4 14/10/2015
33 w4a120 x x 4a 4 20/10/2015
34 w4a_end 4a 4 26/10/2015
35 w4a_end2 4a 4 5/11/2015
36 w4b_start 4b 4 26/9/2015
37 w4b109 x 4b 4 9/10/2015
38 w4b112 x 4b 4 12/10/2015
39 w4b114 4b 4 14/10/2015
40 w4b120 x 4b 4 20/10/2015
41 w4b_end 4b 4 26/10/2015
42 w4b_end2 4b 4 15/12/2015
43 w5a_start 5a 5 1/10/2015
44 w5a109 x 5a 5 9/10/2015
45 w5a112 x x 5a 5 12/10/2015
46 w5a114 x x 5a 5 14/10/2015
47 w5a120 x 5a 5 20/10/2015
48 w5a_end 5a 5 26/10/2015
49 w5a_end2 5a 5 5/11/2015
50 w5b_start 5b 5 1/10/2015
51 w5b109 x 5b 5 9/10/2015
52 w5b112 x x 5b 5 12/10/2015
53 w5b114 x x 5b 5 14/10/2015
54 w5b120 x 5b 5 20/10/2015
55 w5b_end 5b 5 26/10/2015
56 w5b_end2 5b 5 5/11/2015
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Table A.2: Details of measured wine parameters.

No.
Alcohol
percentage

Density
(Specific gravity)

Alcohol
(g/L)

Total sugar
(g/L)

Glucose
(g/L)

Fructose
(g/L)

1 0 1.095 214.8 104.2 110.6
2 0.5 1.088 201.2 101.1 100.1
3 1.11 1.084 8.09 195.4 95.01 95.62
4 1.13 1.084 8.22 196.1 96.44 95.14
5 1.65 1.079 12.07 180.2 90.29 86.58
6 3.5 1.066 25.94 149.2 88.57 59.83
7 10.73 1.008 83.97 21.3 21.76 2.9
8 0 1.095 214.8 104.2 110.6
9 1.3 1.086 201.2 101.1 100.1
10 1.62 1.081 11.85 192.1 96.09 91.2
11 1.99 1.078 14.57 184.9 93.65 86.38
12 3.66 1.065 27.1 158.3 87.58 67.27
13 4.83 1.053 36.22 130.4 82.15 46.94
14 8 1.029 61.36 74.9 75.03 2.97
15 0 1.091 202.5 97.8 104.7
16 1.5 1.074 178.7 88.7 90
17 5.65 1.043 42.73 110.7 43.11 63.94
18 8.18 1.022 63.21 64 19.72 41.89
19 11.41 0.998 90.25 11.4 2.13 8.7
20 11.6 0.994 92.12 1.1 -0.55 2.25
21 11.87 0.993 94.32 0.7 -0.52 2.16
22 0 1.091 202.5 97.8 104.7
23 6 1.04 92.41 34.92 57.49
24 9.51 1.013 74.12 44.3 9.92 32.49
25 10.64 1.003 83.65 23.4 3.97 18.83
26 11.85 0.994 94.01 2 -0.64 3.14
27 11.57 0.994 91.91 -0.4 -0.87 1.19
28 12.06 0.993 95.8 -0.2 -0.61 1.31
29 0 1.098 220 106.4 113.6
30 1 1.088 201.7 100 101.7
31 4.93 1.054 36.94 133.7 58.06 71.33
32 8.44 1.026 64.9 72.4 24.11 45.03
33 12.34 0.995 97.9 2.8 -1.36 3.61
34 12.15 0.994 96.46 -0.2 -1.28 1.11
35 12.58 0.993 99.92 0.2 -1.21 1.1
36 0 1.098 220 106.4 113.6
37 1 1.086 198 99 99
38 1.79 1.08 13.07 188.9 93.34 90.53
39 2.16 1.076 15.83 180.7 90.37 85.94
40 3.47 1.066 25.65 160.4 81.6 73.98
41 4 1.059 29.81 142.3 75.97 63.28
42 12.22 0.994 97.03 -0.6 -0.77 0.77
43 0 1.089 205.3 97.75 102.07
44 0.22 1.089 1.57 195.5 96.6 98.9
45 0.87 1.08 6.36 188 89.17 93.33
46 3.85 1.055 28.78 135.3 54.23 75.95
47 10.5 1.003 82.66 18.9 1.13 16.39
48 11.2 0.995 88.86 0 -1.35 1.24
49 11.58 0.994 91.94 -0.3 -1.15 1.06
50 0 1.089 195.5 96.6 98.9
51 0.14 1.089 0.98 195.5 96.6 98.9
52 1.49 1.077 10.94 182.3 87.39 89.47
53 4.86 1.049 36.53 122 50.73 67.04
54 10.34 1.006 81.13 28.5 3.17 23.51
55 11.2 0.994 88.83 0.8 -1.33 2.04
56 12.08 0.994 95.88 0.9 -0.98 1.95
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Table A.6: The relative abundance of number of mapped reads to each taxon in curated database per
sample found in at least once.

Taxa Sample ID W1 W2 W3 W4 W5 W6 W7 W8 W9 W10
A. aceti 6E-05 2E-05 0.00019 2E-05 1E-05 0.00012 0.00037 4E-05 7E-05 4E-05
A. cerevisiae 0.0001 3E-05 0.00016 3E-05 2E-05 0.0001 0.00052 7E-05 5E-05 3E-05
A. chrysogenum 0.00018 5E-05 0.00057 4E-05 0.0001 0.00033 0.00102 7E-05 0.00028 0.00019
A. furcatum 4E-05 1E-05 0.0001 1E-05 3E-05 6E-05 0.00024 3E-05 5E-05 4E-05
A. vitis 0.00012 4E-05 0.00041 6E-05 6E-05 0.00026 0.00111 0.00013 0.00015 8E-05
A. alternata 0.00168 0.00061 0.00259 0.00112 0.00115 0.00054 0.01408 0.00327 0.00452 0.00227
A. orientalis 0.0001 3E-05 0.0007 3E-05 8E-05 0.00054 0.00116 6E-05 0.00014 0.00011
A. aculeatus 0.00024 4E-05 0.00048 2E-05 9E-05 0.00027 0.00082 7E-05 0.00021 0.00015
A. carbonarius 0.00626 0.00478 0.00092 0.00386 0.00456 0.00358 0.00178 0.0043 0.00128 0.00337
A. clavatus 0.00021 6E-05 0.00057 4E-05 0.00011 0.0003 0.00113 0.00012 0.00029 0.00021
A. flavus 0.00027 0.00013 0.00252 5E-05 0.00039 0.00127 0.00405 0.00011 0.00073 0.0007
A. fumigatus 0.00011 1E-05 0.00011 1E-05 2E-05 5E-05 0.00023 3E-05 7E-05 5E-05
A. nidulans 6E-05 1E-05 0.00014 2E-05 3E-05 6E-05 0.00024 4E-05 0.0001 7E-05
A. niger 0.00026 5E-05 0.00072 5E-05 0.0001 0.00028 0.0013 0.00017 0.00049 0.00036
A. terreus 5E-05 2E-05 0.00016 2E-05 3E-05 5E-05 0.00034 9E-05 0.00012 6E-05
A. pullulans 0.00025 0.00012 0.00108 0.00069 0.00068 0.00052 0.00164 0.00096 0.00152 0.00104
B. cereus 2E-05 2E-05 8E-05 1E-05 2E-05 6E-05 0.00023 1E-05 7E-05 9E-05
B. subtilis 9E-05 1E-05 0.00015 1E-05 3E-05 6E-05 0.00018 1E-05 0.0001 3E-05
B. thuringiensis 4E-05 1E-05 0.0001 1E-05 3E-05 5E-05 8E-05 1E-05 5E-05 4E-05
B. panamericana 8E-05 3E-05 0.00019 6E-05 7E-05 0.0001 0.00049 0.00016 0.00023 0.00013
B. bifidum 3E-05 1E-05 0.00023 1E-05 4E-05 0.0002 0.00049 1E-05 5E-05 4E-05
B. cinerea 0.00159 0.00058 0.00619 0.00479 0.00411 0.0013 0.0068 0.00232 0.02168 0.00377
B. bruxellensis 0.0004 8E-05 0.00166 8E-05 6E-05 0.00011 0.00167 0.00019 0.00075 0.00028
B. cenocepacia 0.00118 0.00032 0.0044 0.00036 0.00034 0.00238 0.00726 0.00057 0.00132 0.00077
B. pseudomallei 0.00068 0.0002 0.00268 0.0002 0.00018 0.00142 0.00431 0.00033 0.00076 0.00047
B. thailandensis 0.00065 0.00019 0.00257 0.00019 0.00018 0.00133 0.0041 0.00033 0.00074 0.00046
C. albicans 0.00067 0.0001 0.00224 7E-05 8E-05 0.00015 0.00214 0.00023 0.001 0.00035
C. glabrata 0.00103 0.0004 0.00456 0.00037 0.0003 0.00037 0.00094 0.00022 0.00129 0.00059
C. freundii 0.00054 0.0001 0.00077 7E-05 8E-05 0.00043 0.00155 0.00011 0.00029 0.00016
C. lusitaniae 0.00071 0.00015 0.00129 7E-05 6E-05 0.00011 0.03303 0.00296 0.00482 0.00098
C. gattii VGI 0.00066 0.00011 0.00025 2E-05 3E-05 8E-05 0.00032 4E-05 0.00012 6E-05
C. neoformans 0.00013 2E-05 9E-05 2E-05 3E-05 5E-05 0.00016 1E-05 5E-05 2E-05
C. ammoniigenes 3E-05 1E-05 0.00018 1E-05 2E-05 0.00019 0.00031 2E-05 6E-05 4E-05
C. flaccumfaciens 8E-05 3E-05 0.00045 2E-05 5E-05 0.00049 0.00087 4E-05 8E-05 8E-05
D. fabryi 0.00199 0.00096 0.02395 0.00039 0.00343 0.01073 0.03611 0.00075 0.0065 0.0053
D. hansenii 0.00054 6E-05 0.00311 7E-05 8E-05 0.00011 0.0017 0.00026 0.00117 0.00037
D. ampelina 0.00014 4E-05 0.00049 5E-05 9E-05 0.00022 0.00082 6E-05 0.00022 0.00014
D. japonica 0.00035 0.0001 0.00132 0.0001 9E-05 0.0008 0.00221 0.0002 0.00036 0.00025
D. thiooxydans 0.00025 7E-05 0.00097 8E-05 9E-05 0.00057 0.00173 0.00014 0.0003 0.0002
E. billingiae 0.00011 5E-05 0.00018 3E-05 5E-05 0.00011 0.00027 3E-05 5E-05 4E-05
E. necator 3E-05 1E-05 8E-05 7E-05 8E-05 3E-05 0.00026 0.00026 0.0002 0.00013
F. fujikuroi 6E-05 1E-05 0.00019 1E-05 4E-05 0.0001 0.00026 2E-05 7E-05 5E-05
F. oxysporum 0.00056 0.00022 0.00551 0.00012 0.00091 0.00251 0.0071 0.0002 0.00173 0.00109
F. verticillioides 9E-05 2E-05 0.00027 2E-05 5E-05 9E-05 0.00033 6E-05 0.00013 8E-05
G. bombi 2E-05 0 1E-05 0 1E-05 1E-05 3E-05 0 1E-05 0
G. intestini 1E-05 0 2E-05 0 0 1E-05 1E-05 0 1E-05 0
G. mensalis 1E-05 0 1E-05 0 0 1E-05 3E-05 0 0 0
G. oxydans 0.00219 0.00087 0.00011 1E-05 1E-05 0.00015 0.00024 2E-05 4E-05 2E-05
H. guilliermondii 0.00034 4E-05 0.00224 5E-05 2E-05 8E-05 0.00033 5E-05 0.00071 0.00031
H. uvarum 0.08172 0.00999 0.54252 0.01478 0.00698 0.02186 0.07382 0.01144 0.16887 0.06743
K. servazzii 0.00294 0.00064 0.0225 0.00047 0.00037 0.00056 0.00326 0.00069 0.00428 0.00153
K. pneumoniae 0.0012 0.0001 0.0005 5E-05 8E-05 0.00041 0.00105 0.00013 0.00023 0.00012
K. aestuarii 0.00035 5E-05 0.00163 5E-05 5E-05 8E-05 0.00047 8E-05 0.00062 0.00029
K. marxianus 0.00073 0.00011 0.00384 0.00012 8E-05 0.00023 0.00099 0.00013 0.00125 0.00051
K. wickerhamii 0.00035 0.00013 0.00148 0.0001 0.0001 8E-05 0.00043 0.00011 0.00048 0.00021
K. xylinus 0.00018 7E-05 0.00049 4E-05 3E-05 0.00025 0.00082 7E-05 0.00012 8E-05
L. kluyveri 0.00082 0.00011 0.00476 0.0001 9E-05 0.0003 0.00128 0.00013 0.00131 0.00053
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L. thermotolerans 9E-05 1E-05 0.00034 1E-05 1E-05 2E-05 0.0006 6E-05 0.00018 4E-05
L. waltii 0.00222 0.00115 0.01967 0.00056 0.00205 0.00725 0.02593 0.00202 0.00502 0.00422
L. brevis 8E-05 0 1E-05 0 0 1E-05 2E-05 0 2E-05 1E-05
L. buchneri 8E-05 0 1E-05 0 0 2E-05 4E-05 0 1E-05 0
L. delbrueckii 0.01653 1E-05 9E-05 1E-05 1E-05 8E-05 0.00012 1E-05 3E-05 2E-05
L. plantarum 0.00019 1E-05 5E-05 1E-05 1E-05 3E-05 8E-05 0 2E-05 1E-05
L. amnigena 0.00016 5E-05 0.00014 2E-05 4E-05 0.00011 0.00027 2E-05 6E-05 5E-05
L. citreum 0.00016 1E-05 2E-05 1E-05 2E-05 4E-05 9E-05 1E-05 4E-05 3E-05
L. mesenteroides 4E-05 1E-05 6E-05 0 2E-05 5E-05 3E-05 1E-05 3E-05 6E-05
L. pseudomesenteroides 0.00011 0 2E-05 0 0 2E-05 3E-05 0 1E-05 1E-05
M. amorphae 0.00086 0.00025 0.00294 0.00029 0.00031 0.00151 0.00562 0.00052 0.00106 0.00063
M. ciceri 0.00053 0.00015 0.00171 0.00017 0.00017 0.00089 0.00349 0.00034 0.00062 0.00039
M. japonicum 0.00068 0.00019 0.0024 0.00025 0.00022 0.00118 0.00469 0.00047 0.00075 0.00048
M. extorquens 0.00044 0.00012 0.00145 0.00019 0.00016 0.00085 0.00408 0.00048 0.00055 0.00028
M. spp. 04-218.3 0.00045 0.00011 0.00111 6E-05 0.00012 0.00023 0.00567 0.0007 0.00129 0.00041
M. spp. 13-106.1 0.00169 0.00039 0.00693 0.00034 0.00024 0.00042 0.01758 0.00191 0.00466 0.0014
M. guilliermondii 0.00053 0.0001 0.00237 9E-05 6E-05 0.00023 0.00273 0.00039 0.00125 0.00042
M. luteus 0.00043 0.00018 0.00473 8E-05 0.00072 0.00779 0.00631 0.00017 0.00065 0.00037
M. lylae 0.00014 4E-05 0.00059 2E-05 7E-05 0.00159 0.00148 4E-05 0.00012 8E-05
M. terreus 0.00019 0.00013 0.00141 5E-05 0.00018 0.00144 0.00129 0.00011 0.00035 0.00045
M. chitosanitabida 0.00194 0.00057 0.00719 0.0005 0.00053 0.00313 0.01093 0.00081 0.0022 0.00138
M. circinelloides 0.00055 0.00011 0.0006 3E-05 6E-05 0.00017 0.00085 0.00012 0.00047 0.00014
O. oeni 3E-05 0 3E-05 0 0 3E-05 6E-05 0 0 0
P. vagans 7E-05 3E-05 0.0001 2E-05 1E-05 6E-05 0.00014 2E-05 4E-05 4E-05
P. damnosus 0.00067 1E-05 5E-05 0 1E-05 2E-05 5E-05 0 1E-05 1E-05
P. kluyveri 0.00086 7E-05 0.00022 0 2E-05 1E-05 0 0 0 0
P. kudriavzevii 0.00131 0.00016 0.00406 0.0001 0.00013 0.00039 0.0031 0.00025 0.00126 0.00049
P. viticola 2E-05 1E-05 9E-05 1E-05 1E-05 4E-05 0.00011 2E-05 3E-05 3E-05
P. acidifaciens 0.0001 3E-05 0.00155 2E-05 0.00029 0.00083 0.00311 4E-05 0.00015 0.00014
P. cyclohexanicum 6E-05 2E-05 0.00089 1E-05 0.00016 0.00048 0.00165 2E-05 0.0001 7E-05
P. freudenreichii 9E-05 3E-05 0.00135 2E-05 0.00025 0.00071 0.00265 2E-05 0.00013 0.00011
P. syringae 0.00043 0.00015 0.00069 7E-05 9E-05 0.00038 0.00111 7E-05 0.00015 0.00014
R. solanacearum 0.004 0.00115 0.01498 0.00129 0.00126 0.00946 0.02536 0.00213 0.00473 0.00298
R. collo-cygni 0.00021 3E-05 0.00012 1E-05 2E-05 7E-05 0.00025 4E-05 6E-05 5E-05
R. endophylla 0.00013 2E-05 0.00029 2E-05 3E-05 4E-05 0.00017 3E-05 0.00016 6E-05
R. irregularis 0.00116 0.00038 0.00428 0.0002 0.0007 0.00169 0.00778 0.00045 0.00197 0.00118
R. spp. FNED7-22 5E-05 1E-05 7E-05 1E-05 2E-05 3E-05 0.00016 3E-05 4E-05 2E-05
R. spp. JG-1b 8E-05 2E-05 0.00024 3E-05 3E-05 0.0001 0.00026 2E-05 8E-05 6E-05
R. aquatilis 0.00361 0.00104 0.01332 0.00096 0.00107 0.00571 0.0198 0.00144 0.00401 0.00255
R. depolymerans 0.00101 0.00029 0.00399 0.00028 0.00029 0.00176 0.00632 0.00045 0.00118 0.00068
R. terrae 0.00142 0.00036 0.00315 0.00033 0.00039 0.00134 0.00526 0.00064 0.00189 0.001
S. bayanus 0.00064 0.00049 0.00156 0.00043 0.0004 0.00047 0.00064 0.00027 0.00049 0.00038
S. cerevisiae 0.64529 0.7761 0.08492 0.69036 0.689 0.67528 0.19766 0.68259 0.20944 0.53149
S. paradoxus 0.00672 0.01111 0.00179 0.01074 0.01261 0.00834 0.0021 0.00921 0.00288 0.00923
S. pastorianus 0.14544 0.16182 0.01558 0.14759 0.12952 0.15365 0.03674 0.13104 0.03884 0.09344
S. lignosus 0.00018 2E-05 0.00085 3E-05 2E-05 6E-05 0.00095 0.0001 0.00035 0.00014
S. shehatae 0.00038 6E-05 0.00125 4E-05 3E-05 0.00012 0.00342 0.00046 0.00108 0.00028
S. stipitis 0.00044 5E-05 0.00262 6E-05 4E-05 9E-05 0.00127 0.00016 0.00089 0.00035
S. pombe 0.00014 3E-05 0.0007 2E-05 2E-05 7E-05 0.00089 9E-05 0.00033 0.00011
S. alvi 3E-05 1E-05 9E-05 1E-05 1E-05 4E-05 0.00013 1E-05 2E-05 2E-05
S. melonis 0.00023 8E-05 0.0008 9E-05 0.00011 0.00052 0.00211 0.00024 0.0003 0.00015
S. phyllosphaerae 0.00018 6E-05 0.0007 7E-05 0.0001 0.00039 0.00161 0.00018 0.00024 0.00012
S. wittichii 0.00014 5E-05 0.00051 5E-05 6E-05 0.00027 0.00132 0.00014 0.00017 0.0001
S. aureus 0.00018 3E-05 0.00117 6E-05 0.00012 0.00046 0.00154 7E-05 0.00028 0.00018
S. bacillaris 2E-05 1E-05 2E-05 0 1E-05 2E-05 5E-05 0 1E-05 1E-05
T. morbirosei 2E-05 1E-05 5E-05 1E-05 1E-05 3E-05 8E-05 1E-05 2E-05 1E-05
T. ptyseos 6E-05 4E-05 2E-05 0 1E-05 2E-05 4E-05 0 1E-05 1E-05
T. saanichensis 1E-05 1E-05 2E-05 1E-05 1E-05 1E-05 3E-05 0 1E-05 0
T. delbrueckii 0.0004 0.00021 0.00111 0.00017 0.00014 0.00022 0.00029 6E-05 0.00026 0.00015
V. boronicumulans 0.00103 0.0003 0.00392 0.00029 0.00032 0.00197 0.00668 0.00052 0.0012 0.0007
V. paradoxus 0.0007 0.00022 0.00267 0.00022 0.00022 0.00147 0.00473 0.00038 0.00083 0.00052
V. soli 0.001 0.0003 0.00375 0.00027 0.0003 0.00188 0.00629 0.00048 0.00117 0.00067
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V. vinifera 0.037 0.01793 0.10939 0.11309 0.12997 0.04576 0.33003 0.1277 0.47125 0.2444
W. halotolerans 1E-05 0 1E-05 0 0 1E-05 1E-05 0 0 0
W. koreensis 6E-05 0 1E-05 1E-05 0 1E-05 8E-05 2E-05 5E-05 3E-05
W. paramesenteroides 8E-05 0 2E-05 0 0 2E-05 3E-05 0 1E-05 0
W. anomalus 0.00075 0.00017 0.00472 0.00015 0.00021 0.00055 0.00116 0.00013 0.00133 0.00062
X. fastidiosa 4E-05 1E-05 0.00012 1E-05 1E-05 8E-05 0.00021 2E-05 3E-05 3E-05
Y. deformans 0.00012 3E-05 0.00024 2E-05 4E-05 0.00013 0.00059 3E-05 0.00012 7E-05
Y. keelungensis 0.00011 1E-05 0.0001 1E-05 1E-05 3E-05 0.00021 2E-05 5E-05 4E-05
Y. lipolytica 0.0002 9E-05 0.00034 5E-05 0.00011 0.00017 0.00058 8E-05 0.00019 9E-05
Z. bailii 0.00101 0.00112 0.00033 0.00085 0.00081 0.001 0.00034 5E-05 0.00014 0.00012
Z. rouxii 0.00041 0.00014 0.00169 0.0001 9E-05 0.00011 0.00044 0.00014 0.00049 0.00026
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Table A.4: BGI 2.0 adapters sequences.

BGI 2.0 adapter Sequence (5’ ->3’)
AD2_Long_2.0 GAACGACATGGCTACGATCCGACTT
AD2_Short_2.0 AAGTCGGATCGT-[C3spacer]
AD1_Long_2.0 TTGTCTTCCTAAGACCGCTTGGCCTCCGACTT
AD1_Short_2.0 AAGTCGGAGGCC-[C3spacer]

Table A.5: Summary of metagenomic sequencing data generated. The classified reads and unclassified
reads were mapped to a curated database using Kraken and Bracken.

Sample name Sample ID
Number of
raw reads

Number of reads after
adapters removal

Classified
reads (%)

Unclassified
reads (%)

w3a109 W1 142920623 140546873 41.47 58.53
w3a112 W2 102176062 100461732 73.62 26.38
w4a109 W3 142621612 139924300 15.33 84.67
w4a112 W4 189804733 186302461 77.69 22.31
w4a114 W5 278295910 270670195 65.69 34.31
w4a120 W6 173458829 170202669 34.33 65.67
w5a112 W7 142743168 139728638 11.14 88.86
w5a114 W8 101573197 99306540 63.72 36.28
w5b112 W9 152459270 150066214 34.98 65.02
w5b114 W10 188277765 184414440 50.54 49.46
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Table A.7: Summary of binning details. Percentage of recruitment summarizes the mean coverage of
each split in each bin, and normalize every bin with respect to each other. It is critical to remember that
these values do not take the unassembled data into account. *: Bins with lower 40% completeness

Vineyard 4

Bin Taxonomy
Total Size
(Mb)

Number of
contigs

Completeness Redundancy
Number of
genes identified

Unknown_Actinobacteria 1.87 319 82.01% 0.72% 1969
Unknown_Bacteria 3.56 959 55.40% 10.07% 4315
Hanseniaspora 4.68 948 44.58% 0.00% 2941
Pelomonas 6.08 545 94.96% 7.91% 6194
Saccharomyces 9.78 1316 75.90% 7.23% 6562
Vineyard 5

Bin Taxonomy
Total Size
(Mb)

Number of
contigs

Completeness Redundancy
Number of
genes identified

Unknown_Actinobacteria 2.34 61 97.12% 0.72% 2199
Bradyrhizobium 8.08 585 77.70% 9.35% 8103
Hanseniaspora 9.36 582 78.31% 1.20% 5475
Metschnikowia 12.3 2682 54.22% 6.02% 8768
Pelomonas 6.08 521 97.84% 9.35% 6146
Saccharomyces 11.58 248 86.75% 7.23% 6480
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Table A.8: Percentage of recruitment for the metagenomic data of vineyards 4 and 5. Percentage of
recruitment summarizes the mean coverage of each split in each bin, and normalize every bin with
respect to each other. It is critical to remember that these values do not take the unassembled data into
account. *: Bins with lower 40% completeness

Vineyard 4
Bin Taxonomy W3 W4 W5 W6
Unknown_Actinobacteria 11.80% 0.40% 6.10% 39.50%
Unknown_Bacteria 3.60% 1.00% 1.00% 0.00%
Hanseniaspora 72.00% 8.20% 5.60% 10.90%
Pelomonas 7.60% 1.90% 1.80% 10.60%
Saccharomyces 3.10% 83.30% 79.80% 23.80%
Others* 1.90% 5.20% 5.70% 15.20%
Total 100.00% 100.00% 100.00% 100.00%
Vineyard 5
Bin Taxonomy W9 W10
Unknown_Actinobacteria 1.30% 1.20%
Bradyrhizobium 1.70% 0.60%
Hanseniaspora 44.20% 22.80%
Metschnikowia 18.10% 3.90%
Pelomonas 6.10% 4.60%
Saccharomyces 22.60% 61.60%
Others* 6.10% 5.20%
Total 100.00% 100.00%
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Figure A.1: Absolute counts of functions with taxonomy separation from eggNOG results with the top
6 groups.

Bacteria, eukaryotes (without fungi), opisthokonts, other fungus, family Saccharomycetaceae, and virus
are included. Functions compared between vineyard 4 (W3 and W4) and vineyard 5 (W9 and W10)
show abundances and differences caused mainly by two groups: bacteria and a collective group of
“other fungus and Saccharomycetaceae.”
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Figure A.2: Heatmap visualization of the drafted genomic bins.

The vineyard 4 (v4) and vineyard 5 (v5) assigned with unique 6394 KEGG Orthology annotated func-
tions using affinity propagation with Pearson correlation on the presence and absence table. Cluster
colors are based on unsupervised clustering from affinity propagation.
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Figure A.3: Affinity propagation clustering of mapped taxa using Pearson correlation in metagenomic
data of vineyard 4.

(A) The species which had an increase of their abundance during the fermentation were grouped to
cluster 1. (B) Second cluster included Vitis vinifera, Erysiphe necator, and Botrytis cinerea. (C) Third
cluster was wine related yeasts driven cluster dominated with Hanseniaspora uvarum. The cluster shows
a decrease from the start and no further increase until the end. (D) Fourth ambiguous cluster with yeast
and bacteria.
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Figure A.4: Metabarcoding performance.

Sample read numbers from metabarcoding mapped against ITS2 gene copy numbers with samples
colored and shaped according to fermentation behavior. The data show that samples with stuck fermen-
tation behavior had the lowest amounts of both reads and ITS2 gene copy numbers. Blue triangle: stuck
fermentation behavior, orange circle: normal fermentation behavior.
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Figure A.5: qPCR of three extraction methods in different sample types.

Mean Ct values (±standard deviation) from qPCR of three extraction methods in different sample types.
n = 5 for ferment, while n = 2 for other. Colors correspond to the three methods: dark gray: BEST, light
gray: BEMT, gray: NEBNext. Refer to Supplementary File S1 for more details.
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A.2 Chapter 3

Finding Functional Differences Between Species in a Micro-
bial Community: Case Studies in Wine Fermentation and Ke-
fir Culture

A.2.1 Supplementary Tables, Data Availability and Figures

Data, accession numbers and scripts used are available on Github:
https://github.com/SystemsBioinformatics/funciminer. Shotgun sequencing data
are available in the European Nucleotide Archive with accession numbers listed in the Github reposi-
tory in the file wine_accession.tsv. Genome sequencing data are available at NCBI, under BioProject
PRJNA375758.

Table A.9 lists the genome sequences of strains isolate from kefir used in this study.

A.2.2 Grape skins inhibit growth of L. plantarum

The observation that L. plantarum hardly, if at all grows in the red wine fermentations suggests that the
skins or compounds originating from the skins inhibit its growth. This hypothesis was tested experi-
mentally. The inhibition of L. plantarum by skins was tested in 15 samples encompassing pasteurized
juices of eight different grape varieties (four white and four red) with or without skins. Figure A.25
shows that growth of L. plantarum is inhibited in the initial stages of fermentation. Six samples are not
presented in Figure A.25 because L. plantarum did not grow in them. Four of these (two Merlot and
two Cabarnet) were, in contrast to the other samples, stored frozen together with their skins, possibly
causing inhibitory compounds to leach from the skins. One Merlot sample was thermo-vinificated, a
method that is likely to promote leaching of skin compounds into the juice. Finally, one white variety
(Malagouzia) shows an inhibition of L. plantarum growth without skins and slow growth in the pres-
ence of skins (Figure A.26). M&M: For each grape variety we followed 8 fermentations, 4 without
skins and 4 with skins. All grape juices were adjusted to pH 3.75. 75g Of grape juice and 15g of
skins and seeds were put in a bottle. The bottles were pasteurized at 72 ◦C for 90 seconds, followed
by immediate cooling down to room temperature by placing them into sterile water. 3.4g Of frozen
L. plantarum MW-1 strain was diluted in 99 ml of sterile water, of which 1 ml aliquots were used to
inoculate 2 out of 4 samples of both conditions (skins or no skins). Sampling was carried out on day
0 (the day of inoculation), after 2 hours, on day 1 and on day 3. Samples were plated on Square Petri
Dishes on artificial grape juice agar. The plates were incubated at 30 ◦C, while fermentations were
carried out at 25 ◦C.

A.2.3 Investigation of metagenomes using 16S-rRNA reconstruction

To obtain an overview of communities in wine fermentations and to increase the taxonomic accuracy, we
reconstructed the full-length ribosomal (SSU or 16S-rRNA) genes. Afterwards, the SSU’s are clustered
to OTUs and subsequently used to create a biome table,B, of dimensions n×m, wherem is the samples
and n is the number of resulting OTU’s. The total number of unique OTU’s during the fermentation is
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Table A.9: WGS identifier, species and the percentage of genes that could be mapped to KO’s.

WGS Species name Mapped genes [%]

PDEW00000000 L.lactis 46.3
NCXG00000000 L.lactis 46.9
NDFJ00000000 L.kefiri 51.1
NDFM00000000 R.dentocariosa 44.6
NCWR00000000 M.luteus 54.3
NCXH00000000 S.haemolyticus 55.7
NDFN00000000 B.drentensis 47.3
NCWS00000000 L.kefiri 51.5
NCWT00000000 L.mesenteroides 60.8
NDFK00000000 S.saccharolyticus 57.5
NCWU00000000 R.dentocariosa 49.0
NCWV00000000 L.lactis 48.2
NCWW00000000 B.simplex 47.4
NCXI00000000 L.parakefiri 52.7
NGUZ00000000 C.tuberculostearicum 52.0
PDEV00000000 R.dentocariosa 47.0
NCWX00000000 S.rhizophila 52.5
NDFL00000000 S.saccharolyticus 56.4
NCWY00000000 B.casei 47.5
NCWZ00000000 L.kefiranofaciens 51.5
NCXJ00000000 S.pasteuri 56.9
NCXA00000000 L.parakefiri 51.9
NCXE00000000 M.luteus 51.2
NCXB00000000 S.hominis 59.9
NCXC00000000 L.lactis 46.1
NDFO00000000 A.ghanensis 54.8
NCXK00000000 A.fabarum 52.7
NCXD00000000 L.kefiri 52.4
NDFP00000000 A.ghanensis 54.7
NDFI00000000 S.saccharolyticus 58.4
NGVM00000000 S.pseudopneumoniae 52.5
NCXF00000000 M.osloensis 62.5
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followed in the three grape varieties and different fermentation tanks (Figure A.14), yielding a total of
nine fermentations. The number of OTU’s is higher at the initial time points (the grape must samples)
and decreases until the end (the bottled samples), which have the least diversity and a smaller total
number of OTUs.

An exploratory data analysis reveals that the microbiome of the white grape variety Airen is very
different from the two red grap varieties Bobal and Tempranillo. using non-metric multidimensional
scaling (NMDS) and Bray–Curtis dissimilarity on the data of table B groups of samples can be dis-
criminated (Figure A.15 A). The white Airen variety microbiome separates from the two red grape
varieties (Figure A.15 C, B). Furthermore, in the same plots the initial grape musts samples (before the
fermentation) are always projected close to each other.

The samples were clustered using affinity propagation with Pearson correlation distance calculated
from table B. Once more, an evident separation ensues between the white and the two red varieties
(Figure A.16 C, B).

SSU reconstructions and taxonomic assignment on species level of SSU genes gave valuable in-
sights, such as the separation between microbiomes on white and red grape varieties, and the explo-
ration of simple dynamics, like the diminishing number of OTU’s during fermentation. However, the
relative abundance of the OTU’s is not precise, due to the uneven depth of sequencing(Figure A.10).
Correlations between the dynamic abundance data and, for example, the inoculation of L. plantarum in
1 out of the 3 respective time points could not be distinguished. Moreover, the process of reconstruction
is time consuming and heavy in computational requirements.

A.2.4 Reconstructing draft genomes using binning

We apply binning using the MaxBin 2.0 tool [282, 283], which allows a reconstruction of draft genomes.
Using these, estimates of the relative abundances of the reconstructed draft genomes can be obtained
by counting the number of corresponding sequence reads. Only a small part of the members of the
reconstructions were considered good enough, based on the completeness score (which is the fraction
of unique marker genes versus of 107 marker genes) and were used for further analysis. In total, the data
allowed a reconstruction of 24 draft bacteria genomes with a completeness above 70%. The overview in
Figure A.18 shows these draft genomes for fermentations of each grape variety with the corresponding
scores.

The three different varieties binned independently by merging beforehand the shotgun samples into
three "super" samples and assembly with IDBA-ud [195]. To visualize the results we use t-distributed
stochastic neighbor embedding (t-SNE) on the pentaoligonucleotide frequencies [500] into three di-
mensional space (Figure A.17).

The abundance of Lactobacilli bins during the different wine fermentations is shown in Figure A.19,
top. The L. plantarum inoculatiopns can be identified for each grape variety. Interestingly, the abun-
dance of L. plantarum diminishes when inoculated in the two red grape varieties, whereas in the white
grape variety it remains highly abundant and even increases. Furthermore, L. plantarum is present in
the Airen control samples, in contrast to the control samples of the red varieties. In addition, another
Lactobacillus bin was found only in the Airen microbiome with assigned taxonomy of Lactobacillus
brevis.
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A.2.5 L. plantarum correspondence between binning and KO results

To pursue the L. plantarum we also annotated its genome, which was produced by isolation and individ-
ual sequencing (see material and methods for more details). Figure A.19 - bottom shows the presence
and absence of L. plantarum KOs during the different fermentation periods, the pattern observations are
greatly similar to the bin abundance bar plot (Figure A.19 - top). Additionally, with this alternative ap-
proach the visualization provides an important advantage. The bars of the Airen control samples show
higher similarity in terms of L. plantarum KOs than the control samples from the two red varieties.
Hence, in Airen microbiome we already found L. plantarum and another close related Lactobacillus
bin. Yet, by looking at all the other genera based on the NCBI taxonomy of Ghostkoala (Figure A.20)
is noticeable that multiple genera show higher similarity to the L. plantarum KOs.

A.2.6 Feature selection on metagenomics wine microbiome

For the goal of targeted identification of discriminative genera and the corresponding pathways for each
variety we exploit the random forest feature selection. Firstly, we apply the selection process to the
matrix G and identify fifty-four genera in total (Figure A.22 A). After filtering the genera with low
standard deviation the number reduced to ten (Figure A.22 B). This analysis reveals Gluconobacter,
Pantoea, Komagataeibacter and Asaia abundance to be discriminative for Airen microbiome, Pseu-
doalteromonas for Tempranillo microbiome and Bradyrhizobium as well as Rhodopseudomonas for
Bobal microbiom.

To explore biological implication we continue by mapping KOs to KEGG pathways and create
another matrix P , where n now represent the pathway coverage of the KOs (see m&m for details).
Afterwards, we apply feature selection once more on the same classification problem. This led to
eighty-one pathways that belong to eighteen genera, eleven out of eighteen were also found using the
matrix G. We found that Gluconobacter had many discriminative pathways for the Airen microbiome,
for example a high number of amino acid biosynthesis and starch and sucrose metabolism genes. Also
genes of glutathione metabolism from Chromobacterium, and amino acid (lysine) and pantothenate
and CoA biosynthesis genes of Pseudogulbenkiania were discriminative. Finally, genes from biotin
metabolism of Asaia were discriminative. Only a few genera had discriminative pathways for the
Tempranillo microbiome such as Rhodonobacter and Dyella. On the other hand, many pathways from
the Bradyrhizobium genus, for example involved in bacterial chemotaxis, beta-lactam resistance fatty
acid, carbon, sulfur and nitrogen metabolism were discriminative for the Bobal microbiome.

Finally, we investigate the presence of flagellar assembly pathway together with the bacterial chemo-
taxis pathway(Figure A.24), a combination which could lead to identification of microorganism with
potential capability to move and influence the structural properties of the community inside the fermen-
tation tank. We found enrichment on these two pathways at Pseudomonas genus, which is present on
all three microbiomes and few genera only at Airen microbiome, such as Gluconobacter, Gluconaceto-
bacter, Pantoea.

A.2.7 Comparison of metabolic capacity between L. plantarum and O. oeni.

We already found an interesting pattern of L. plantarum abundance between the inoculation tanks, and
possible influence when it is highly abundant towards other members of the community. Therefore,

151 APPENDIX A. APPENDIX



We continue the investigation of L. plantarum potential influence based on metabolism to the whole
community by using our "in silico screening" method (Figure 3.6 A). In a closer inspection the two
Lactobacilli have complete histidine pathway in contrast to Oenoccocus bins. Moreover, we found that
Pantoea and Erwinia have a high number of PTS genes, but still far lower than the Lactobacillus and
Oenococcus genus (Figure 3.6B top).

Finally, to determine if L. plantarum high PTS capabilities could influence the potential functional
properties of the community, we remove all L. plantarum ORFs from four selected samples (first days
of four different fermentations from two varieties) and investigate the effect in pathways in terms of
presence or absence of reactions. The PTS pathway of the two controls samples shows no change at
all after the removal. However, on both inoculation samples we found three sugar uptake conversions
(reported in discussion) that disappear after the removal (Figure A.23). Moreover, we identify other
exclusive metabolic capability of L. plantarum, like two abc transporters: cobalt and nickel, a reaction
in glycerophosholpid metabolism, etc. Still, these findings correspond only to the first day of the
selected samples. Further exploration reveal a difference in PTS enrichment between the reconstructed
O. oeni draft genomes, the second species in PTS enrichment and the main malolactic fermenter in
wine making. Although, the two O. oeni reconstructed from the two red varieties metagenome don’t
have any of the L. plantarum "unique" PTS conversion identified on the time of inoculation. In contrast
the O. oeni reconstructed from the white variety metagenome has one KO the same with L. plantarum
PTS (K02744, PTS system, N-acetylgalactosamine-specific IIA component)

A.2.8 MetaDraft

The quantitative analysis and modelling of metabolism is an important tool in the modern systems
biologist’s toolbox. More specifically, constraint-based modelling as applied to genome scale recon-
structions (GSR’s) has proven to be useful in elucidating both the fundamental properties of metabolic
networks. GSR’s also provide a bridge between metabolic function and an organisms ‘genomic poten-
tial’ through the definition of gene-protein-reaction associations (GPR’s) [501]. In general the process
of creating GSR’s by hand is a time and labour intensive process. While various automated pipelines
exist to facilitate this process these are mostly geared to the creation of a complete ‘working’ models
and are not easily modified for other purposes [235, 502].

MetaDraft has primarily been developed as a user-friendly, graphical tool to facilitate the generation
of draft, stoichiometrically balanced, metabolic networks. Using the AutoGraph method it utilises a
sequence based orthology approach [287] which is independent of any genome specific, functional
annotation. Metadraft is available on request from Dr. Brett G. Olivier (b.g.olivier@vu.nl)
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Figure A.6: Dendrogram based on exemplar-based agglomerative clustering on top of the result ob-
tained by affinity propagation.
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The red line indicates the cut-off which leads to eight distinct clusters.

Figure A.7: Comparison of L. kefiranofaciens and L. kefiri regarding the KO coverage of the PTS.

L. kefiranofaciens L. kefiri

Reactions shown in green have a least one KO associated with them.
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Figure A.8: First validation of the BlastKoala output using MetaDraft.

BlastKoala output MetaDraft output

The green reactions are associated with at least one KO present in the organism L. buchneri, the red
ones have at least one gene of an organism of the phylum "Firmicutes" associated with them.
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Figure A.9: Second validation of the BlastKoala output using MetaDraft.

BlastKoala output MetaDraft output

There are no KO’s in the organism L. kefiranofaciens, the red reactions have at least one gene of an
organism of the phylum "Firmicutes" associated with them.
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Figure A.10: Experimental design of wine fermentation.

For each grape variety three fermentation were followed. One of the three was inoculated with L. plan-
tarum strain, while the other two not. All three were inoculated with the same S. cerevisiae. Samples
names are explained in Figure A.11.

Figure A.11: Explanation of sample names of 75 metagenome samples.

T1_0
B5_1
A11_2

First letter indicates grape variety

Number after letter indicates 
tank of fermentation

Last number indicates 
day of fermentation

Sample names explanation

The samples correspond to 9 different wine fermentations of the three grape varieties.
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Figure A.12: Overview of data size effect.
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Figure A.13: Samples were sequenced at uneven depth. The plot displays the total number of predicted
ORFs against the paired - end read count for each sample. Shapes correspond to different grape varieties
and colored samples should be considered with caution.
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Figure A.14: OTUs count during wine fermentation.
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Figure A.15: Dimensionality reduction plots with non-metric multidimensional scaling on Bray-Curtis
dissimilarity of the OTU table.
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Figure A.16: Clustering samples with affinity propagation using Pearson correlation on the OTU table.
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Figure A.17: Visualization of binning of Airen microbiome.

Binning overview
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Figure A.18: Table with reconstructed bins per grape variety with completeness above 70%.

Bobal Tempranillo Airen
Taxonomy

Rhodanobacter sp. 115
Completeness

Pseudomonas syringae group
Oenococcus oeni

Bradyrhizobium sp. BTAi1
Propionibacteriaceae

Lactobacillus plantarum

99.1%
98.1%
96.3%
95.3%
86.0%
78.5%

Bin.name
Lactobacillus plantarum

Completeness

Rhodanobacter sp. 115
Pseudomonas syringae group

Oenococcus oeni
Pseudoalteromonas haloplanktis

Pezizomycotina

99.1%
99.1%
97.2%
95.3%
95.3%
70.1%

Taxonomy
Lactobacillus plantarum

Completeness

Rhodanobacter sp. 115
Pseudomonas syringae group

Oenococcus oeni
Pseudoalteromonas haloplanktis

Pezizomycotina

99.1%
99.1%
97.2%
95.3%
95.3%
70.1%

Taxonomy
Gulbenkiania mobilis

Completeness

Lactobacillus brevis
Lactobacillus plantarum

Oenococcus oeni
Chryseobacterium

Pseudomonas aeruginosa group
Gluconobacter oxydans

Pseudomonas syringae group
Pseudomonas syringae group

Komagataeibacter hansenii
Asaia prunellae

Sphingomonas sp. FUKUSWIS1

100.0%
99.1%
95.3%
93.5%
92.5%
91.6%
90.7%
85.0%
82.2%
79.4%
72.9%
72.9%
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Figure A.19: Three types of wine fermentations of grape varieties Bobal, Tempranillo and Airen indi-
cated by the bar below figures.
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is absent for all varieties. Data are derived from the metagenome shotgun sequences Figure A.10. The
upper panel shows the relative abundance of L. plantarum and its close relative L. brevis in wine. Note
the high abundance of these bacteria in white wine. The lower panel shows the presence or absence of
L. plantarum KEGG Orthologs (KO) against each KO profile of the complete community.
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Figure A.20: Heatmap of genera with high number of same L. plantarum KOs.

Vitis

Dyella

Rhodanobacter

Vibrio

Pseudoalteromonas

Propionibacterium

Massilia

Stenotrophomonas

Acetobacter

Gluconobacter

Pseudomonas

Azotobacter

Komagataeibacter

Pantoea

Pseudogulbenkiania

Aeromonas

Plautia.stali.symbiont

Asaia

Lactobacillus

Erwinia

Oenococcus

Leuconostoc

Bradyrhizobium

0

200

400

600

800

1000

1 2 3 11 22 33

Bobal Tempranillo Airen

163 APPENDIX A. APPENDIX



Figure A.21: Clustering robustness test.
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Figure A.22: Heatmap with discriminative genera for classification between three grape varieties.
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Figure A.23: Three PTS systems exclusively provided by L. plantarum.

Complete community: Day 1, Airen inoculation Community without L. plantarum: Day 1, Airen inoculation

Three PTS systems exclusively provided by L. plantarum, found by a comparison of the PTS of the
whole community and the PTS of the community without L. plantarum. The data for this figure were
obtained from the first time point of the Airen inoculation tank.

Figure A.24: Heatmaps with genera of high pathway enrichment (A) on flagela and (B) on chemotaxis.
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Figure A.25: Nine different experiments on six different pasteurized grape juice varieties.
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top row are white grape varieties while the rest are reds.
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Figure A.26: Six different experiments on four different pasteurized grape juice varieties.
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Figure A.27: Shannon index of wine fermentations shows that Airen has the highest biodiversity com-
pared to the two red wines (Bobal and Tempranillo).
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Figure A.28: The Metadraft graphical user interface.

Figure A.29: The left-hand panel shows the template model selection list.
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A.3 Chapter 4

Using functional annotations to study pairwise interactions in
urinary tract infection community

A.3.1 Supplementary Tables and Figures

Table A.10: Table containing the selected genomes for the in silico UTI community. A list of strains
was made similar as in the experimental community. Genomes were selected from NCBI database
following an order of preference by being related to urine or UTI, human isolate or lab strain, animal
isolate and, finally, any other complete genome available. The information was retrieved in September
2017.

Genus Group Strain Accession number Origin
Escherichia Ecoli E.coli cft073 nc_004431.1 UPEC (Uropathogenic E. coli)
Escherichia Ecoli E. coli 536 nc_008253.1 UPEC,
Escherichia Ecoli E. coli IAI39 nc_011750.1 UPEC
Escherichia Ecoli E. coli UTI89 nc_007946.1 UTI isolate
Escherichia Ecoli E. coli E24377A nc_009801.1 Human isolate
Escherichia Ecoli E. coli HS nc_009800.1 Human isolate
Escherichia Ecoli E. coli O83-H1-NRG857C nc_017634.1 Human isolate
Escherichia Ecoli E. coli O111-H-11128 nc_013364.1 Human isolate
Escherichia Ecoli E. coli O157-H7-Sakai nc_002695.1 Human isolate
Escherichia Ecoli E. coli SE11DNA nc_011415.1 Human isolate
Escherichia Ecoli E. coli O103-H2-12009 nc_013353.1 Human isolate
Escherichia Ecoli E. coli O104-H4-2011C3493 nc_018658.1 Human isolate
Escherichia Ecoli E. coli SE15DNA nc_013654.1 Human isolate
Escherichia Ecoli E. coli BL21-DE3 nc_012892.2 Lab strain
Escherichia Ecoli E. coli BW2952 nc_012759.1 Lab strain
Escherichia Ecoli E. coli ATCC8739 nc_010468.1 Lab strain
Escherichia Ecoli E. coli K12-DH10B nc_010473.1 Lab strain
Escherichia Ecoli E. coli K12-W3110DNA nc_007779.1 Lab strain
Escherichia Ecoli E. coli K12-MG1655 nc_000913.3 Common isolate
Escherichia Ecoli E. coli SMS-3-5 nc_010498.1 Environment isolate. Highly resistant.
Enterococcus Ent E. faecalis fdaargos338 cp_022059.1 Urine isolate
Enterococcus Ent E. faecium Aus004 nc_017022.1 Human isolate
Enterococcus Ent E. faecium Aus0085 nc_021994.1 Human isolate
Enterococcus Ent E. faecium DO nc_017960.1 Human isolate
Enterococcus Ent E. faecalis ATCC29212 nz_cp008816.1 Human isolate
Enterococcus Ent E. faecalis CLB21560 nz_cp019512.1 Human isolate
Enterococcus Ent E. faecalis OG1RF cp_017316.1 Human isolate
Enterococcus Ent E. faecalis DENG1 nz_cp0040801.1 Human isolate
Enterococcus Ent E. faecalis symbioflor1 cp_019770.1 Lab strain
Enterococcus Ent E. faecalis L12 nz_cp018102.1 Swine.
Enterococcus Ent E. faecalis L9 nz_cp018004.2 Swine
Enterococcus Ent E. faecalis D32 nc_018221.1 Swine
Enterococcus Ent E. faecalis KB1 nz_cp015410.2 Mouse
Enterococcus Ent E. faecalis sorialis nz_cp015883.1 Mouse
Enterococcus Ent E. faecalis LD33 nz_cp014949.1 Included in dairy product
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Citrobacter KECS C. koseri fdaargos287 cp_022073.1 UTI patient urine isolate
Enterobacter KECS E. cloacae atcc13047 nc_014121.1 Human isolate
Klensiella KECS K. pneumoniae kp36 nz_cp017385.1 UTI isolate
Klebsiella KECS K. pneumoniae hs11286 nc_016845.1 Reference strain
Klebsiella KECS K. oxytoca cav1335 nz_cp011618.1 Urine/Genitourinary tract isolate
Pantoea KECS P. ananatis lmg5342 nc_016816.1 Human isolate
Serratia KECS S. liquefaciens atcc27592 nc_021741.1 From a culture collection.
Morganella MM M. morganii kt nc_020418.1 Human isolate
Proteus Pm P. mirabilis HI4320 nc_010554.1 Urine isolate
Proteus Pm P. mirabilis CYPM1 nz_cp012674.1 Urine isolate
Proteus Pm P. mirabilis BB2000 nc_022000.1 Human isolate
Proteus Pm P. mirabilis AOUC001 nz_cp015347.1 Human isolate
Pseudomonas Ps P. aeruginosa DK2 nc_018080.1 Human isolate
Pseudomonas Ps P. aeruginosa LESB58 nc_011770.1 Human isolate
Proteus Pm P. mirabilis AR0059 nz_cp020052.1 Human isolate
Proteus Pm P. mirabilis AR0155 nz_cp021694.1 Human isolate
Proteus Pm P. mirabilis AR0159 nz_cp021550.1 Human isolate
Proteus Pm P. mirabilis AR0156 nz_cp021852.1 Human isolate
Pseudomonas Ps P. aeruginosa PAO1 nc_002516.2 Human isolate. Reference strains.
Pseudomonas Ps P. aeruginosa SCV20265 nc_023149.1 Human isolate. Highly adherent
Pseudomonas Ps P. aeruginosa PA7 nc_009656.1 Human isolate. Multiresistant.
Pseudomonas Ps P. aeruginosa YCBPP-PA14 nc_008463.1 Human isolate.
Pseudomonas Ps P. aeruginosa NCGM2-S1 nc_017549.1 Human isolate
Pseudomonas Ps P. fluorescens f113 nc_016830.1 Sugar-beet rhizosphere.
Staphylococcus St S. aureus mw2 nc_003923.1 representative of S. aureus
Staphylococcus St S. aureus Newman nc_009641.1 Strain representative of second group
Staphylococcus St S._haemolyticus_jcsc1435 nc_007168.1 Human isolate
Staphylococcus St S. haemolyticus Sh29-312-L2 cp_cp011116.1 Human isolate
Staphylococcus St S. haemolyticus S167 nz_cp013911.1 Leaf.
Staphylococcus St S. capitis ayp1020 nz_cp007601.1 Only one available
Staphylococcus St S. simulans fdaargos124 nz_cp014016.1 Only one available
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Figure A.30: Relationship between RevEcoR and NetCooperate indexes and the experimental growth
information

Interaction scatter plots depicting the relationship between the computed RevEcoR (complementarity
and competition) and NetCooperate (BSS, Biosynthetic Support Score) indexes (x-axis) and the exper-
imental growth information (y-axis). Each points represents the donor with a different shape, and the
acceptor with a color; the values are grouped by the mean of the genera. Note that MM was omit-
ted from the analysis community. The indexes are calculated for the complete set of KO’s of every
organism. In this case, a pattern could not be discerned.
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A.4 Chapter 7

High biodiversity is sustained by a few primary consumers in
an anaerobic benzene degrading culture

A.4.1 Benzene medium

The basal salt medium [407] used in the niche separation experiment was modified as following. Ultra
pure water from a Barnstead Nanopure Diamond (Beun De Ronde, The Netherlands) was boiled for 20
minutes. Subsequently the water was flushed with 90% N2 :10% CO2 gas (passed through 0.2 µm filter)
for 20 minutes. Then, we added 1000 mg KH2PO4, 500 mg (NH4)2SO4, 400 mg MgSO4, 100 mg CaCl2
and 800 mg NaNO3 per liter of anoxic water. After the salts were dissolved, we transferred 546 mL of
the solution to a 20 min flushed (90% N2 :10% CO2) glass bottle (1 L). After transferred to the glass
bottles, the medium was flushed, with the same N2:CO2 mixture as earlier, for 20 min. After flushed, the
bottles were closed with Viton stoppers and sealed with crimp-seals. After sealed, the headspace of each
bottle was flushed, with the same N2:CO2 mixture as earlier, for other 20 min. Lastly, an overpressure
was created by pumping 90% N2 :10% CO2 into each bottle. Next, 2.4 mL Vitamin solution (20 mg
Thiamine, 10 mg Riboflavin, 20 mg Nicotinic acid, 50 mg Pyridoxamine, 10 mg Pantothenic acid, 10
mg Vitamin B12, 2 mg Biotin, 10 mg p-Aminobenzoic acid, 5 mg lipoic acid and 5 mg Folic acid
dissolved in 100mL sterile anoxic H2O), 2.4 mL DSMZ SL-6 trace element solution (100 mg ZnSO4
7 H2O, 30 mg MnCl2 4 H2O, 300 mg H3BO4, 200 mg CoCl2 6 H2O, 10 mg CuCl2 2 H2O, 20 mg
NiCl2 6 H2O and 30 mg Na2MoO4 2 H2O dissolved in 50mL sterile anoxic H2O), 13.2 mL of 0,5M
phosphate stock (3,55 g Na2HPO4 dissolved in 50mL sterile anoxic H2O) and 36 mL of 1M carbonate
stock (4,2 g NaHCO3 dissolved in 50mL sterile anoxic H2O) were added to the basal salt medium. The
final pH was adjusted to 7.0. We prepared the 22.55 mM benzene anoxic stock solution (benzene stock
solution A) by transferring 30 mL benzene (≥ 99.0%) to a 50 mL serum bottle flushed beforehand with
90% N2 :10% CO2 for 20 min. Subsequently, we flushed benzene with 90% N2:10% CO2 for 30 min.
After flushed, the bottle was closed with Viton stoppers and sealed with crimp-seals. After sealed, the
headspace of each bottle was flushed for 20 min and incubated overnight at ambient temperature. The
next day we opened the serum bottle and flushed the benzene solution with 90% N2:10% CO2 for other
30 minutes. After flushed, the bottle was closed with Viton stoppers and sealed with crimp-seals. Next,
the headspace of the benzene stock was flushed for 20 min. Lastly, an overpressure was created by
pumping 90% N2:10% CO2 into the bottle. Finally, we diluted the benzene anoxic stock solution A to a
4 mM anoxic benzene stock solution further used to spike the serum bottles to be used in the succession
experiment. Prior to adding benzene into the 30mL serum bottles (Sigma-Aldrich, MW, USA) used
for the succession experiment, 9.5 ultrapure anoxic water was added to each of them. These bottles
were flushed, sealed and had an extra pressure created as described earlier. After the extra pressure was
added, all 30 mL serum bottles were autoclaved at 121◦C for 20 min. Once autoclaved, 0.5 mL of the
4 mM anoxic benzene stock solution was added to each bottle to a final concentration of 200 µM in 10
mL of ultrapure anoxic sterile water. We kept an anoxic environment by carrying out inoculations in a
Controlled Atmosphere Chamber Model 855-AC (Plas-Labs, Inc. MI, USA) flushed with 50 L per h of
90% N2:10% CO2 gas for 72h. All materials containing plastic used during inoculations were punctured
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and moved to the chamber 48h prior inoculation. During inoculations, oxygen levels were monitored
by an Oxygen Measuring Device GOX 100 (GREISINGER electronic GmbH, Germany). Initially, we
inoculated the 600 mL bottles containing basal salt medium, buffers, vitamins and trace elements with
approximately 4 x 10 4 cells (see later) of the model benzene consortium per mL. Subsequently, each
30 mL serum bottle containing 10 mL of 200 µM sterile benzene solution were added of the mixture
of benzene microbial consortium cells and basal medium. Orbital shacking of the mixture of cells and
basal medium was performed prior inoculation of each serum bottle.

A.4.2 Benzene determination

Benzene was measured in 150 µL headspace gas samples, taken through the Viton stoppers of the
cultures using a gas-tight Luer-Lok glass syringe and directly injected into a Shimadzu GC-2010 gas
chromatograph (Shimadzu, Kyoto, Japan) equipped with a flame ionization detector and an Rtx-1 cap-
illary (30.0 m × 0.32 mm; Restek, Bellefonte, PA, USA). Helium was used as carrier gas at a flow
of 3 mL min-1. The injector and detector temperatures were set to 250◦C and 300◦C, respectively.
The column temperature was kept at 75◦C for 2 minutes followed by a gradual increase of 12◦C per
minute to 100◦C. External standards for quantification were prepared in buffered medium in crimp-
sealed serum bottles with the same liquid-to-headspace ratio and the medium composition as used for
the batch cultures in the succession experiment.

A.4.3 Determination of cell density

Total cell enumeration in batch cultures was performed using a modified version of a previously de-
scribed protocol [503]. In a 15 mL polypropylene tube (Greiner, Sigma-Aldrich Co.,Zwijndrecht, The
Netherlands) we aliquot 2 mL of cell suspension. Cells were fixed by addition of 50 µL of formamide to
each cell suspension, this suspension was inverted 10 times gently and incubated it 10 min at room tem-
perature. After, we added 4 mL of 10 mM Sodium Pyrophosphated dissolved in filtered and sterilized
(autoclave, 121◦C for 15 min) Ultrapure water from a Barnstead Nanopure Diamond (Beun De Rond,
The Netherlands). Aggregates of cells were disassembled by sonication by placing the polypropylene
tubes in a plastic glass filled with water, no more than four at a time. We optimized sonication con-
ditions by varying the amplitude, time and interval of sonication using a SONIPREP 150 Ultrasonic
Disintegrator (MSE Ltd., London, UK). Optimal sonication was determined by light microscopy of
cell suspensions prior and after sonication and consisted of 3x sonication with 30 sec interval, when
tubes were softly inverted, using 15 µm of amplitude. We stained cells by adding of 0.5 µL of SYBR
Green II (Thermo Fisher Scientific Inc., Reinach, Switzerland), inverting tubes ten times and incubating
them for 5 min in the dark. Prior flow cytometry, we fixed, sonicated and stained 2 mL of the same
batch of non-inoculated benzene medium used in the succession experiments to measure the presence
of aggregates that could be stained by SYBR-Green II. Cell densities, expressed as numbers of cells per
mL, were determined by running 200 µL of cells suspensions and non-inoculated benzene medium as
a controu in a Accuri C6 Flow Cytometer System (Accuri Ctometers, Ltd., Cambs, UK) using medium
velocity setting and Filter FL1-A (specific for SYBR-Green). Cell densities of samples were used to
calculate OTU abundances (see section Appendix A.4.8).
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A.4.4 Nucleic acids extraction

We extracted nucleic acids for amplicon sequencing (samples from the succession experiment), metage-
nomics and metatranscriptomics. Prior sampling the 115 samples during the succession experiment we
homogenized each serum bottle by flipping them five times before collection of 1 mL of microbial sus-
pension were individually added to a 2mL Lysing Matrix E tube (MP Biomedicals, Solon, OH, USA)
and snap-freeze on liquid nitrogen. The 1 mL aliquots were Samples were stored at -80 o C prior nucleic
acid extraction. Further, we collected samples for metagenomics and metatranscriptomics directly from
the original bioreactor [407]. Liquid samples were taken in triplicate from bioreactor outlet. To sample
biofilm samples, defined areas of biofilm attached to the bioreactor glass wall were scraping off under a
constant N2/CO2 (80/20%) flow. Subsequently, the liquid phase in the vessel was stirred for 5 minutes
at 200 rpm to dislodge the biofilm aggregates followed by liquid phase sampling using a 60 ml syringe
via a sampling pipe and viton tubing (Rubber BV, Hilversum, The Netherlands). We added 750 µL of
formamide to each sample and centrifuged the samples at 4000 × g at 4◦C for 20 min in a Hettich

®

ROTINA 420/420R centrifuge (manufacturer information). The 6 samples, approximately 1 mL each,
were added to 2mL Lysing Matrix E tube (MP Biomedicals, Solon, OH, USA). The samples were im-
mediately stored at -80◦C until further analyses. Co-extraction of DNA and RNA was performed using
a modified CTAB/phenol-chloroform described previously [464]. We prepared crude nucleic acid ex-
tractions by adding 0.5 mL phenol:chloroform:isoamyl alcohol (25:24:1) (Sigma-Aldrich, St. Louis,
MO, USA) to each 2mL Lysing Matrix E tube containing 1 mL microbial suspension, followed by
addition of 0.5 mL of CTAB buffer (5% CTAB, 0.25M phosphate buffer pH 8.0, 0.3M NaCl). The
samples were beaten at 5.5 m/s for 30 s in a The FastPrep

®
FP120 cell disrupter (Thermo Savant, CA,

USA), and centrifuged at 16K g for 5 min at 4◦C in a microcentrifuge CR 3i (Jouan S.A., France).
The aqueous phase was transferred to MaxTract High Density 2 mL tubes (Qiagen Inc, Valencia, CA,
USA). A second round of extraction with 0.5 ml CTAB buffer, and beating was performed. An equal
volume of chloroform was added to each MaxTract High Density tube and centrifuged at 16K g for 5
min at 4◦C. The aqueous phase was transferred to a new 2 mL Eppendorf tube and the nucleic acids
were precipitated over night at 4 o C with 2 volumes of 30% (w/v) polyethylene glycol 6000 and 1.6
M NaCl. The crude nucleic acid pellets were resuspended in 30 µL of DEPC-treated water, and stored
at -80◦C. Purification of total DNA from the 115 samples of the succession experiment was achieved
using a QIAamp DNA Mini Kit (Qiagen Inc, Valencia, CA, USA) following manufacturer’s instruc-
tions. Further, we co-purified the DNA and RNA from the 6 samples originated from bioreactor using
a AllPrep DNA/RNA Mini kit (Qiagen Inc, Valencia, CA, USA) following manufacturer’s instructions.

A.4.5 Determination of nitrate and nitrite

We determined the concentration of nitrate and nitrite using capillary electrophoresis ([504]). In short,
samples were centrifuged at 13,000 × g for 15 min at 4◦C. The supernatants were transferred to tubes
containing a 0.22 - µm microspin filter (Ultrafree-MC, Millipore, Bedford, MA, USA) and centrifuged
at 12,000xg for 5 min at 4◦C. Filtered supernatants were stored at -80◦C. The capillary electrophoresis
was performed on a Beckman P/ACE™ MDQ (Beckman Coulter, Brea, CA, USA) system at 25 ◦C
with UV detection at 214 nm, capillary length of 50 cm, and separation at 25 kV in reverse mode. Run
buffers were derived from the CEofix™ Anions 2 kit (Analis, Suarlée, Belgium). Potassium bromate
was used as the internal standard in all samples.
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A.4.6 Vitamin analysis

Vitamins were analyzed by LC-MS/MS using a Prominence XR HPLC system (Shimadzu, Den Bosch,
The Netherlands) coupled to a QTRAP 4000 tandem mass spectrometer (AB SCIEX, Framingham,
MA, USA). Chromatographic separation was achieved with a Kinetex core-shell column containing a
biphenyl stationary phase (2.6 µm particle size, 100 Å pore size, 100 × 2.1 mm; Phenomenex, Utrecht,
The Netherlands) with an injection volume of 3 µL, a flow rate of 0.2 mL min-1, and a column tem-
perature of 30◦C. Gradient elution with eluent A (0.01% v/v acetic acid in H2O) and eluent B (100%
methanol) was as follows: 0-3 min (0% B); 3-8 min (linear increase to 100% B); 8-11 min (100% B).
The equilibration time between injections was set to 7 min. Ionization of LC effluent was achieved by
electrospray ionization (ESI), switching between positive (0-6.9 min, dwell time 40 ms; 7.4-8.5 min;
dwell time 50 ms) and negative mode (6.9-7.4 min, dwell time 50 ms; 8.5-11.6 min, dwell time 50
ms) during the run, with N2 as ionization and collision gas. Ionization settings were as follows: ion-
ization temperature 400◦C; ionization voltage 4,000 V (-4,000 V in negative mode); curtain gas 10;
nebulizer gas 40; heater gas 50; collision gas 6 (all arbitrary units). Matrix-matched standard solutions
for external calibration curves were prepared in culture medium at concentrations from 0.002-0.512
ppm. Quantification was based on chromatographic peak areas. Data acquisition and analysis was done
with the AB SCIEX Analyst 1.5.1 software. Compound-specific measurement parameters are given in
Table A.14. Using this method we were able to measure seven out of the ten vitamins added to the
medium at the beginning of the incubation. Vitamins that we not measurable with this method were:
thiamine, folic acid, and pyridoxamine. Although we could detect riboflavin, concentrations of the
samples from the beginning of the incubation were lower than the actual concentrations added to the
medium, and additionally, we also saw degradation of riboflavin in the sterile controls at the end of the
incubation. Therefore, the observed decrease in riboflavin concentrations in the cultures might be due
to abiotic degradation.

A.4.7 Metabolite analysis

Metabolite analysis by LC-MS/MS was carried out on a Nexera UHPLC system (Shimadzu, Den Bosch,
The Netherlands) coupled to a high-resolution quadrupole time-of-flight mass spectrometer (Q-TOF;
maXis 4G, Bruker Daltonics, Wormer, The Netherlands). Compounds were separated on a C18 sta-
tionary phase column (1.7 µm particle size, 150 × 2.1 mm; ACQUITY UPLC CSH C18, Waters,
Etten-Leur, The Netherlands) preceded by a guard column (1.7 µm particle size, 5 × 2.1 mm; AC-
QUITY UPLC CSH C18, Waters) with an injection volume of 20 µL, a flow rate of 0.2 mL min-1, and
column temperature of 30◦C. Gradients of eluent A (0.01% v/v acetic acid in 10% v/v methanol) and
eluent B (0.01% v/v acetic acid in 100% methanol) were as follows: 0-1 min (5% B); 1-15 min (linear
increase to 100% B); 15-18 min (100% B). Compound ionization was carried out by ESI operating in
negative mode using N2 as ionization gas with the following settings: capillary voltage 3,500 V; end
plate offset 500 V; nebulizer gas pressure (N2) 1 bar; dry gas (N2) 8 L min-1; dry temperature 200◦C.
Settings for MS analysis were: funnel radio frequency (RF) 200 Vpp (voltage point to point); multipole
RF 200 Vpp; collision cell RF 200 Vpp; transfer time 40 µs; prepulse storage 5 µs. Internal mass
calibration was performed automatically during every measurement by loop injection of 20 µL of a 2
mM sodium acetate solution in 1:1 v/v ultrapure water-isopropanol [505]. Data acquisition and analysis
were done using the Bruker Daltonics software suites Compass 2.7 and DataAnalysis 4.2, respectively.
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Data-independent target analysis of compounds for which pure standards were available Table A.15
was carried out in broadband collision induced dissociation (bbCID) MS/MS mode with a collision
energy of 17 eV and an acquisition rate of 1 Hz. Compound identification was based on chromato-
graphic retention time, a mass accuracy threshold (≤ 5 ppm), and an isotopic pattern fit threshold (≤ 50
mSigma) [505]. To confirm the identities of detected compounds in the samples and to test for matrix
effects, samples were spiked with standards to a final concentration of 0.15 ppm. A subset of samples
(three biological replicates sampled at 0, 18, 28, 32, and 36 days after inoculation) were selected for
data-dependent suspect analysis carried out in auto-MS/MS mode by screening MS spectra for masses
of putative metabolites and automatically selecting the found masses for MS/MS analysis Table A.16.
Mass spectra for precursor ions were recorded in a range of 35-800 m/z (excluding 58.91-59.11 m/z
corresponding to acetic acid in the eluent) with a spectra rate frequency of 2.5 Hz. Collision energies
were increased with increasing masses as follows: 35-100 m/z: 15 V; 100-500 m/z: 25 V; 500-1000
m/z: 50 V. Isolation widths for precursor ions were set to 8 m/z. Acquisition cycle time was set to 2
seconds.

A.4.8 16S rDNA amplicon sequencing and processing

We performed triplicate PCR reactions to each sample to minimize PCR bias. Each twenty-five µL
reaction consisted of 0.05 µg of DNA, 0.5 µL of Phusion Green Hot Start II High-Fidelity Dna Poly-
merase (Thermo Fisher Scientific, Sweden), 5.0 µL of 5x Phusion Green HF buffer MgCl2, 2.3 µL of
25 mM MgCl2 stock solution, 5.0 µL of 10 µM primer mix (1:1) and 0.5 µL of 10 mM nucleotide
mix. The thermal cycling protocol was 98◦C form 30 sec, 30 cycles of 98◦C for 10 sec, 55◦C for
30 sec, 72◦C for 30 sec and a final 10-min extension at 72◦C. We targeted the V3-V4 region of the
16S rRNA gene, primer pairs were: S-D-Bact-0341-b-S-17, 5’-CCTACGGGNGGCWGCAG-3 [266],
and the V4 reverse primer S-D-Bact-0785-a-A-21, 5’-GACTACHVGGGTATCTAATCC-3 [266]. The
primers were dual barcoded and were compatible with Illumina sequencing platforms as described pre-
viouslsy [100]. All amplicons were run in 0.9% (w/v) agarose gels and bands containing expected size
were excised from the gel and purified using QIAquick Gel Extraction kit (QIAGEN GmbH, Hilden,
Germany). Purified amplicons from each triplicate reaction were pooled together and further quantified
using PicoGreen dsDNA assay (Invitrogen). High-throughput sequencing raw data were demultiplexed
and processed using a modified version of the Brazilian Microbiome Project 16S profiling analysis
pipeline [465]. Quality trimming was done according with the following parameters: quality score >
30, sequence length > 285, no maximum ambiguous bases and no mismatched bases in the primer.
Sequences belonging to different samples were demultiplexed using bcl2fastq software version 1.8.4
(Illumina), primers were trimmed using Cutadapt [180] and paired-end reads were joined using PAN-
DAseq [506]. Metadata and demultiplexed sampels were merged using add_qiime_labels.py [100] and
sequence headers were changed using bmp-Qiime2Uparse.pl [465]. UPARSE was used to dereplicate,
discard OTUs detected less than 4 times and OTU cluster at 97% similarity [182]. We filtered chimeras
by reference database search using UCHIME algorithm [507] and the SSU rRNA gene SILVA database
release 123 [508]. OTU taxonomy was assigned using the UCLUST algorithm [182] on QIIME [100]
using SILVA compatible taxonomy mapping files [508] and aligned using SINA [279]. Taxonomy was
manually curated and refined up to genus level based on 95% similarity of reference sequences. The ref-
erence tree was calculated using FastTree 2 [400]. We generated a BIOM file using make_otu_table.py
on QIIME [100]. Further, because of the low cell numbers we decided to start the PCR reactions with
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a low yield DNA (0.05 µg of DNA per reaction). To avoid the presence of OTUs of external origin in
the experimental samples, we added two blank PCR reactions per plate. Every OTU found in the blank
PCR reactions was removed from the BIOM file prior to the community analysis.

A.4.9 Bioreactor Sampling

Liquid samples were taken in triplicate from bioreactor outlet. To sample biofilm, defined areas o
attached to the bioreactor glass wall were scraping off under a constant N2/CO2 (80/20%) flow. Sub-
sequently, the liquid phase in the vessel was stirred for 5 minutes at 200 rpm to dislodge the biofilm
aggregates followed by liquid phase sampling using a 60 ml syringe via a sampling pipe and viton
tubing (Rubber BV, Hilversum, The Netherlands). The samples were immediately stored at -80◦C until
further analyses. A phenol-chloroform sumultaneous extraction and purification of DNA and RNA was
done as described above.

A.4.10 Metagenomics analysis, MAG selection and taxonomy assignment

For the Anvi’o v6.1 metagenomics workflow, we used the previously assembled contings to create a
corresponding Anvi’o contig databases with the default settings, the trimmed sequences of Biofilm 3
& 4 were mapped to the assembled contings with Bowtie2 v2.3.4.1 and samtools v1.2 [211]. The
pipeline uses underline HMMER3 v3.1.b2 [453] for sequence search, NCBI’s COGs [509] to annotate
genes with function and incorporates Kaiju v1.7.3 [215] web server results to assign taxonomy on
the contigs bases on the NCBI’s non-redundant protein database (for Bacteria, Archaea, Viruses and
database last update: 2017-05-16). During manual refinement we kept the major group of contigs with
matched taxonomy on phylum level. We placed all the excluded contings together with all the non-
clustered contings from MaxBin into a mixed collection indicated as MAG 000. The refined MAGs
were functional annotated eggNOG-mapper v2 [395] with default setting and minimum % of query and
subject coverage to 50. On the first round of analysis (on the MAG collection derived from MaxBin2),
the quality assessment performed with CheckM tool [396]. The MAGs with completion above 90%
and redundancy less than 10% were considered good quality for further analysis. The initial taxonomy
assignments were manually assigned by combining multiple approaches, In more detail, we apply the
multi-metagenome pipeline [284] and MEGANs [510] LCA algorithm. Also, we used the JSpeciesWS
webservie [511] and we reconstructed the phylogeny with PhyloPhlAn [512] on 5847 out of 22055
selected complete bacteria genomes (based on previous taxonomies), plus the good quality MAGs. On
the second round on the refined MAG collection we kept the same quality thresholds, but applied on
the Anvi’o reported scores. Exception were made on MAGs 13, 35, 37, 58 and 59, because they found
highly mixed during manual refinement and we excluded them and on MAG 3 (completion: 98.5 %,
redundancy: 12.6 %) which we include. The final taxonomy assignments were done with GTDB-Tk
v1.0.2 [454]. Finally, custom blast search with post-filtering in R (sequence identity > 97% and bit
score > 200) was performed between a local ribosomal RNA sequence database (SILVA 132 SSURef
Nr99)[508] and our metagenomic MAGs (see overview, Supplementary table A.12). Similar custom
blast search was performed between the OTUs from the succession experiment and the metagenomics
MAGs.
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A.4.11 Metatranscriptomes sequencing and analysis

Quality assessment and trimming of Trueseq adapters were performed with Trim Galore v0.6.0 [194],
which uses Cutadapt v2.3. [180] and FastQC [193], with a minimum sequence length of 40 bp and
a minimum quality of 30 on both ends of the read and as mean quality. All reads with non-IUPAC
characters were discarded as were all reads containing more than three Ns. We removed ribosomal
RNA reads using SortMeRNA v2.1 [513] and all included databases as indicated by developers.

A.4.12 Multi-omics analysis details

RNA and DNA were co-extracted from all six biofilm samples to obtain concurrent metagenome and
metatranscriptome data sets. Clustering analysis is performed using affinity propagation on resulting
Pearson correlation matrix of K. A general work-flow to assess the most suitable number of clusters is
started with high exemplar preferences values, which led to a very large number of clusters. Application
of agglomerative clustering on the resulting affinity propagation clusters using the R-package apcluster
[200]. Therefore, a cutoff manually decided and affinity propagation rerun repeatedly to achieve the
desirable number of clusters. Furthermore, dimensional reduction with Uniform Manifold Approxima-
tion and Projection (UMAP) [457] was performed to visualize the matrixK and the previously obtained
cluster assignments. The R package Boruta [285] was used to obtain a reliable ranking of feature im-
portance and to select only discriminative features (in our case KOs) for the classification task derived
from the previous clustering analysis. The algorithm is a wrapper around Random Forest [286] that
performs randomization tests. Default parameterization was used except the maximal number runs,
which was increased to 2000.

A.4.13 Theoretical scheme of anaerobic benzene degradation

Figure A.40 illustrates the peripheral degradation pathways up to the level of benzoyl CoA intermedi-
ates. Dashed lines indicate putative reactions. Compounds surrounded by dashed rectangles indicate
hypothesized intermediates. Cofactors and conversion products thereof marked with a question mark in-
dicate hypothesized compounds. Reactions for which enzymes and/or genes have been identified are la-
beled with numbered dots. Compounds: (12) benzene; (13) toluene; (14) (R)-benzylsuccinate; (15) (R)-
benzylsuccinyl-CoA; (16) (E)-phenylitaconyl-CoA; (17) 2-[hydroxy(phenyl)methyl]-succinyl-CoA; (18)
benzoylsuccinyl-CoA; (19) benzoate; (20) phenol; (21) phenylphosphate; (22) 4-hydroxybenzoate; (23)
4-hydroxybenzoyl-CoA; (24) benzoyl-CoA; (Fum) fumarate; (SucCoA) succinyl-CoA; (Suc) succi-
nate; (HSCoA) conenzyme A; (AcCoA) acetyl-CoA; (MeTHF) methyl-tetrahydrofolate; (SAM) (S)-
adenosyl-methionine; (THF) tetrahydrofolate; (SAH) (S)-adenosyl-homocysteine; (Pi) inorganic phos-
phate; (Fd) ferredoxin. Enzymes/genes: (R6) benzylsuccinate synthase (BssABCD); (R7) succinyl-
CoA:(R)-benzylsuccinate CoA-transferase (BbsEF); (R8) (R)-benzylsuccinyl-CoA dehydrogenase (BbsG);
(R9) phenylitaconyl-CoA hydratase (BbsH); (R10) 2-[hydroxy(phenyl)methyl]-succinyl-CoA dehydro-
genase (BbsCD); (R11) benzoylsuccinyl-CoA thiolase (BbsAB) [names for (R4-11) identical for A. aro-
maticum EbN1, Azoarcus spp., Thauera spp., Magnetospirillum spp., and G. metallireducens]; (R12)
putative benzene carboxylase (AbcDA, anaerobic enrichment cultures [426, 414]; AbcA, F. palcidus);
(R13) benzoate-CoA ligase (bclA, A. aromaticum EbN1, Thauera spp., Magnetospirillum spp.; bzdA,
Azoarcus spp.; bamY, G. metallireducens, S. aromaticivorans); (R13’) succinyl-CoA:benzoate CoA
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transferase (bct, G. metallireducens); (R14) putative benzene hydroxylase and NADH:quinone oxi-
doreductase (gmet 0231-0232, G. metallireducens); (R15) phenylphosphate synthase (ppsABC, A. aro-
maticum EbN1, G. metallireducens); (R16) phenylphosphate carboxylase (ppcABCD, A. aromaticum
EbN1, G. metallireducens); (R17) 4-hydroxybenzoate-CoA ligase (HbcL-1, A. aromaticum EbN1);
(R18) 4-hydroxybenzoyl-CoA reductase (hcrCAB, A. aromaticum EbN1; PcmRST, G. metallireducens);.
The information in this figure is compiled from the following studies on anaerobic benzene degradation
[426, 420, 414, 423, 514, 515, 516, 517, 518, 519, 520, 521].

Figure A.41 illustrates the central degradation pathways. Dashed lines indicate putative reactions.
Cofactors and conversion products thereof marked with a question mark indicate hypothesized com-
pounds. Reactions for which enzymes and/or genes have been identified are labeled with numbered
dots. Enzymes/genes involved in more than one pathway are highlighted in gray. Numbers for iden-
tifiers of compounds and genes/enzymes continue from Fig. A.40. For clarity, identifiers for com-
pounds and genes/enzymes also occurring in Fig. A.40 have not been changed. (A) Upper path-
ways until hydrolytic ring cleavage. (B) Lower pathways comprising β-oxidation after hydrolytic
ring cleavage for benzoate and subsequent degradation via the TCA cycle during respiration (upper
panel) and fermentation based on S. aromaticivorans ([520]) (lower panel). Compounds: (19) benzoate;
(24) benzoyl-CoA; (70) 2,3-epoxybenzoyl-CoA; (71) 3,4-dehydroadipyl-CoA semialdehyde; (72) 3,4-
dehydroadipyl-CoA; (73) β-ketoadipyl-CoA; (74) acetyl-CoA; (75) succinyl-CoA; (76) cyclohex-1,5-
diene-1-carbonyl-CoA; (77) 6-hydroxycyclohex-1-ene-1-carbonyl-CoA; (78) 6-ketocyclohex-1-ene-1-
carbonyl-CoA; (79) 3-hydroxypimelyl-CoA; (95) 3-ketopimelyl-CoA; (96) glutaryl-CoA; (97) cortonyl-
CoA; (98) 3-hydroxybutyryl-CoA; (99) acetoacetyl-CoA; (100) acetate; (101) butyryl-CoA; (102) bu-
tyrate; (HSCoA) coenzyme A; (Fd) ferredoxin; (Pi) inorganic phosphate. Enzymes/genes: (R13)
benzoate-CoA ligase (bclA, A. aromaticum EbN1, Thauera spp., Magnetospirillum spp.; bzdA, Azoar-
cus spp.; bamY, G. metallireducens, S. aromaticivorans); (R13’) succinyl-CoA:benzoate CoA trans-
ferase (bct, G. metallireducens); (R45) benzoyl-CoA oxygenase (boxAB, A. aromaticum EbN1, Azoar-
cus evansii); (R46) 2,3-epoxybenzoyl-CoA hydrolase (boxC, A. aromaticum EbN1, Azoarcus evan-
sii); (R47) 3,4-dehydroadipyl-CoA semialdehyde dehydrogenase (boxD, Azoarcus evansii); (R48) β-
ketoadipyl-CoA thiolase (boxE, Azoarcus evansii; ebA2768, A. aromaticum EbN1); (R49) benzoyl-
CoA reductase (bcrCBAD, Thauera spp., Magnetospirillum spp., A. aromaticum EbN1; bzdNOPQ,
Azoarcus spp.); (R49’) benzoyl-CoA reductase (bamBCDEFGHI, G. metallireducens, S. aromaticivo-
rans); (R50) cyclohex-1,5-diene-1-carbonyl-CoA hydratase (dch, Thauera spp., Magnetospirillum spp.,
A. aromaticum EbN1; bzdW Azoarcus spp.; bamR G. metallireducens, S. aromaticivorans); (R51) 6-
hydroxycyclohex-1-ene-1-carbonyl-CoA dehydrogenase (had, Thauera spp., Magnetospirillum spp.,
A. aromaticum EbN1; bzdX, Azoarcus spp.; BamQ, G. metallireducens, S. aromaticivorans); (R52)
6-ketocyclohex-1-ene-1-carbonyl-CoA hydrolase (oah, Thauera spp., Magnetospirillum spp., A. aro-
maticum EbN1, bzdY, Azoarcus spp.; bamA, G. metallireducens, S. aromaticivorans);
(R66) 3-hydroxypimelyl-CoA dehydrogenase (fadB, A. aromaticum EbN1; gmet_2169, G. metallire-
ducens; synarDRAFT_1233, S. aromaticivorans); (R67) 3-ketopimelyl-CoA thiolase (ebA2314, A. aro-
maticum EbN1; synarDRAFT_3465, S. aromaticivorans) (R68) glutaryl-CoA dehydrogenase (gcdH,
A. aromaticum EbN1; bamM, G. metallireducens; synarDRAFT_2257); (R69) enoyl-CoA hydratase
(fadB, A. aromaticum EbN1; gmet_2169, G. metallireducens; synarDRAFT_1515, S. aromaticivorans);
(R70) acetoacetyl-CoA reductase (c2A173, A. aromaticum EbN1; gmet_1717, G. metallireducens;
synarDRAFT_1514, S. aromaticivorans) ; (R71) acetoacetyl-CoA thiolase (fadA, A. aromaticum EbN1;
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gmet_1719, G. metallireducens; synarDRAFT_3465, S. aromaticivorans); (R72) acyl-CoA synthase
(synarDRAFT_1015); (R73) butyryl-CoA dehydrogenase (synarDRAFT_1017); (R74) acyl-CoA syn-
thase (synarDRAFT_1015) [names for (R72-74) correspond to S. aromaticivorans]. The information in
this figure is compiled from the following studies on anaerobic benzene degradation [422, 514, 420, 522,
520, 515, 414, 423, 521, 516]. Names for (R66-74) were derived from the KEGG PATHWAY Database
(http://www.genome.jp/kegg/pathway.html) for A. aromaticum ebN1, G. metallireducens, and from the
genome analysis of S. aromaticivorans by Nobu et al. [520].

A.4.14 Selection of pathways for the characterization of anaerobic benzene metabolism

We used the scheme of anaerobic benzene degradation to identify the key enzymes and metabolites
in the KEGG database. As such, we availed of so-called, custom pathways to screen our MAGs for
their KEGG counterparts (Appendix A.4.13). Importantly, not all supposed reactions are integrated
in the current KEGG database. Further, we simplified the custom pathway of the TCA-cycle and in-
cluded only the key enzymes. Each custom-made pathway visualized in heat-maps using the following
scheme, absence: -1, presence: 0, after applying log2 transformation to transcription value for each
KO. we used the R pachages: RColorBrewer, pheatmap and apcluster (Figure A.42 - Figure A.54).
An overview was obtained by transformation of the data into into a graph representation, accounting
only the mRNAs transcription and average the scores based on the custom-made pathway selection. In
the graph, we further split each of the three initial step into two parts, the activation of benzene ring
and the degradation to benzoyl-CoA. Briefly, Benzenestart 01, 02, 03, corresponds to anaerobic acti-
vation and conversion of benzene to benzoyl-CoA with intermediates benzylsuccinate, benzoate and
hydroxybenzoate respectively. Then, Benzene mid aerobic is an aerobic hybrid pathway that convert
benzoyl-CoA to acetyl-CoA and succinyl-CoA, which both of which fuel the TCA-cycle. In the other
hand, Benzene mid anaerobic goes from benzoyl-CoA to 3-hydroxypimelyl-CoA anaerobically. The
Benzene lower continues the anaerobic conversion to cortonyl-CoA. After that, we discriminate two
types, Fermentation 1 to acetate and Fermentation 2 to butyrate and Respiration to acetyl-CoA that
enters the TCA-cycle. Moreover, we also include a custom selection called Denitrification and dissim-
ilatory nitrate reduction to ammonium (DNRA). In more detail, Benzene start 01 represents the upper
path of Fig. A.40 and correspond to reactions R05598, R05588, R05584, R05599, R05575 and R05587
from KEGG. On main Figure 7.2 a&b, the first reaction (R05598) corresponds to the node Benzene
open 01, while the rest reactions to Benzene CoA syn 01 (detailed heatmap: Fig. A.42). Similarly,
Benzene start 02 represents the middle path of Fig. A.40 and correspond to R04986 (Benzene open
02) and R01422 (Benzene CoA syn 02)(detailed heatmap: Fig. A.43). Benzene start 03 represents the
lower path of Fig. A.40 and correspond to reactions R03543 (Benzene open 03), R05625, R01300 and
R05316 (Benzene CoA syn 03)(detailed heatmap: Fig. A.44). Benzene mid aerobic represents the aer-
obic hybrid pathway of Fig. A.41 A left side and correspond to reactions R09555, R09556, R09554 and
R00829. (detailed heatmap: Fig. A.46). Benzene mid anaerobic represents the anaerobic pathway of
Fig. A.41. Reactions at the right side correspond to reactions R09555, R09556, R09554 and R00829.
(detailed heatmap: Fig. A.46). Benzene lower represents the anaerobic conversion to cortonyl-CoA
of Fig. A.41 B at the left side and corresponds to reactions R05305 and R02488. (detailed heatmap:
Fig. A.47). Fermentation 1 represents the path to acetate of Fig. A.41 B left side and corresponds to
a discriminate reaction R0_72. (detailed heatmap: Fig. A.48). Fermentation2 represents the path to
butyrate of Fig. A.41 B left side and corresponds to a discriminate reaction R0_73. (detailed heatmap:
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Fig. A.49). Respiration represents the path to acetyl-CoA of Fig. A.41 B left side and corresponds to
reactions R02685, R03026, R01779 and R00238 (detailed heatmap: Fig. A.50). TCA represents the
TCA-cycle of Fig. A.41 B at the left side and corresponds to the following custom reaction and KEGG
reactions R02164_S, R02164_F, R0_glutamic_1, R0_glutamic_2, R0_citrate_1, R0_citrate_2, R00342
and R00360 (detailed heatmap: Fig. A.51). Denitrification is a custom selection to represent the usage
of nitrate and corresponds to R0_NarGHI, R0_NapAB, R0_NirK, R0_NirS, R0_NorCB and R0_NosZ
reaction (detailed heatmap: Fig. A.52). Key reactions of the glyxoylate shunt are R00479 and R00472
(detailed heatmap: Fig. A.54).

A.4.15 Nitrogen cycling

We scanned the MAGs for genes encoding enzymes involved in dissimilatory reduction of nitrate or
nitrite to ammonium (DNRA) or for denitrification (sequential reduction of nitrate to dinitrogen gas).
DNRA enzyme systems are made up of a nitrate reductase (NarGHI or NapAB to reduce nitrate to ni-
trite) and a membrane bound cytochrome c-type nitrite reductase (NrfAH or NrfABCD-type to reduce
nitrite to ammonium). Both nitrate reductases are membrane bound, but the NarGHI enzyme has its cat-
alytic site inside the cell, whereas the one from the NapAB enzyme faces the outside of the membrane.
This feature has implications for the bioenergetics such that NarGHI contributes to the generation of a
pmf while NapAB is non-energetic. Denitrification pathways on the other hand usually also include one
of these types of nitrate reductase, but the characteristic enzymes that discriminate denitrification from
DNRA are a soluble nitrite reductase (NirK- or NirS-type), a nitric oxide reductase (NorCB or qNor),
and a nitrous oxide reductase (NosZ). The nirS gene encodes a heme cd1-type nitrite reductase, which
requires iron for its hemes. The NirK-type enzyme is a trimer with copper as catalytic center. NorCB is
a 2-subunit enzyme with heme-c containing NorC as the electron donor to the catalytic center of NorB.
The qNor enzyme is a 1-subunit enzyme as a result of the fact that norC and norB paralogous sequences
were fused somewhere during evolution. This enzyme receives electrons from quinol rather than from
cytochrome c in the case of NorCB. Most of the 47 MAGs with their MAGs that we ultimately selected
have the potential to perform DNRA (eight MAGs), denitrification (31 MAGs), or combinations of that
(five MAGs). Only three MAGs express a nitrate reductase without an accompanying nitrite reductase.
It may be that they do not have that genetic potential at all, or that a contig with that genetic information
did not meet the criteria for proper binning. DNRA with nitrate as initial electron acceptor is likely
to occur in five MAGs (these have a NarGHI or NapAB-type nitrate reductase and NrfABCD), with
nitrite in eight MAGs (only NrfA). Notably, genes encoding the alternative nitrite reductase NrfABCD
were not found in either of the MAGs. The five MAGs that have the genetic potential to perform both
DNRA and denitrification are not restricted to certain phyla although three of them belong to the Chlo-
roflexi. Two of the five MAGs lack a nitrate reductase and hence they use nitrite as initial oxidant. The
reason for having both types of nitrate or nitrite reducing capacities is not clear. Typical differences be-
tween the two is that DNRA as compared to denitrification produces less of the cytotoxic intermediate
NO, is faster in terms of rates of electron transfer between donor and acceptor and is more potent in
electron accepting as nitrate reduction to ammonium requires 8 electrons rather than the 5 needed to
reduce nitrate to dinitrogen during denitrification. This may be important for redox balancing during
free energy transduction. The trade-off for using DNRA on the other hand is that the generation of the
proton motive force during the full reduction of 1 nitrate molecule to ammonium is 25% less efficient as
compared to denitrification (18 charge separations during transfer of 8 electrons during DNRA versus
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15 per 5 electrons during denitrification). Organisms that have both trades can opt for the best solution
at every change in their growth condition. A characteristic feature of denitrification is that an N-oxide
ion is reduced to an N-oxide gas, a step catalyzed by a NirS or NirK-type enzyme. Only MAGs that
have either type of reductase are true denitrifiers. These may be split up in three groups, those that
have the nirS gene (one MAG), those with nirK (23 MAGs) and those that have both types (12 MAGs).
The latter organisms are therefore versatile with regard to metal availability. Most of the nirS genes are
found in the proteobacteria (nine MAGs), nirK is more prevailing in all other phyla. Further inspection
of the genetic potential to carry out denitrification identified six MAGs, five of which proteobacteria,
that have a full complement of genes to make all four enzymes of denitrification. The nitrate reductase
most frequently found in the MAGs is of the NarGHI-type (25 MAGs). The NapAB-type is rare and
found in only three MAGs, all of which are proteobacteria. Two of these have even both types of nitrate
reductase. The denitrifying MAGs further display a variety of gene combinations, the most abundant
one is the combination of genes encoding a nitrate and nitrite reductase (11 MAGs), or just a single
nitrite reductase (23 MAGs). The fact that more than half of the denitrifiers seem to be able to reduce
nitrite to nitric oxide, but do not have the means to convert this cytotoxic molecule any further as they
lack the potential to make either type of nitric oxide reductase, may seem quite peculiar for an organ-
ism. From a community perspective, however, this might make sense since NO is a freely diffusible
gas that may be converted into harmless nitrous oxide by other community members that do have nor
genes (18 MAGs). Notably as well is the observation that there are five MAGs with a gene encoding
qNor (one MAG) or with a norCB gene cluster (four MAGs) without a gene encoding an accompanying
nitrite reductase. It might well be that these MAGs have found a niche to efficiently detoxify the com-
munity on the one hand, while using NO as electron acceptor on the other hand. We were also aware
of the fact that a paralogue of the qNor protein was described in a previous study [411]. This paralogue
is called nitric oxide dismutase (NOD) and it shares a high degree of homology with canonical qNor
proteins. But where qNor reduces nitric oxide to nitrous oxide, NOD dismutates 2 molecules of NO
into an oxygen molecule and a dinitrogen molecule without the need for electrons. This reaction has
implications for the enzyme make up. The electron pathway in qNor involves a low spin heme b for
transfer of electrons to the high spin heme in the reaction center. Both hemes are ligated via position-
ally conserved histidine residues next to one another in helix 10 of the enzyme. NOD does not require
electrons so it lost the heme and the allocated histidine during evolution. The absence of this histidine
is characteristic for NOD enzymes and discriminates them from the Nor enzymes. NOD enzymes that
share this property were found in MAGs 34 and 71, although the latter did not meet the criteria for
selection into the MAG list. Nevertheless, these MAGs may well be able to carry out NO dismutation
to produce some oxygen for themselves or for community members. Indeed, it was shown that the
benzene degrading culture produced oxygen once that it was pulsed with nitrite [411, 407, 412]. Some
MAGs may use locally produced traces of oxygen for their mono- or dioxygenases for breakdown of
benzene under an otherwise anaerobic atmosphere. Indeed, we noticed the upregulation of mRNAs
encoding such oxygenases in some of the MAGs. The list of 47 MAGs also includes a member of the
Planctomycetes, order Brocadiales, which is very similar to Candidatus Kuenenia Stuttgartiensis. The
latter MAG carries out the process termed anammox, anaerobic ammonium oxidation. All enzymes for
this free energy transducing process are located within a so-called anammoxosome, a unique type of
organelle. The key enzyme in this process is a hydrazine synthase that combines NO and ammonium to
form hydrazine that is subsequently oxidized to dinitrogen by a hydrazine dehydrogenase. Hydrazine
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synthase is made up of three subunits. The sequences of all 3 of them were deduced from this MAG
and they had high resemblance with those from Candidatus Kuenenia Stuttgartiensis. It is, therefore,
fair to say that a MAG from the Brocadiacea is a member of the community in the benzene degrading
culture. Also, in this case, a MAG has found its own niche in the continuous culture as it has its unique
type of autotrophic metabolism with ammonium as the free energy source and carbon dioxide as the
carbon source. This suggestion is further corroborated by the fact that a MAG from the Brocadiaceae
has been isolated in pure culture some years ago ([407]).

A.4.16 Species and taxonomy

MAGs were assigned to the following phyla: 33 Proteobacteria, 17 Bacteroidetes, 15 Chloroflexi,
11 Actinobacteria, seven Planctomycete, five Verrucomicrobia, four Acidobacteriota, four Myxococ-
cus, three Gemmatimonadetes, two Hydrogenedentota, one of each: Armatimonadota, Firmicutes,
Spirochaetota, Zixibacteria, Deinococcota and three unknown. Our binning methodology and verifi-
cation ultimately resulted in 47 assembled genomes with a high-quality standard. The most dominant
phylum is that of the Proteobacteria (16 MAGs). Five of these are α-protobacteria with the order Rhi-
zobiales as the most prevailing one (four, one of which close to Ochrobactrum anthropi). The 5th
one is Paracoccus saliphilus from the order Rhodobacterales. Rhizobiales and Paracoccus MAG are
known as typical nitrogen fixing organisms with a versatile metabolism, usually able to denitrify un-
der oxygen depletion. The β-proteobacteria contribute with seven MAGs, six of which are from the
order Burkholderiales (some closely related to Candidimonas bauzanensis, Comamonas testosteroni,
and Hydrogenophaga intermedia), and the 7th from the Rhodocyclales (Propionivibrio sp.). Both the
Burkholderiales and Rhodocyclales are described as dominant phylotypes in enrichment cultures of
anaerobic benzene-degrading microcosms and are suggested to use the methylation pathway for anaer-
obic benzene activation [440, 439, 407]. There are further three γ-proteobacteria, order Xanthomon-
adales and one δ-proteobacterium. Xanthomonadales have the genetic potential to make type IV se-
cretion systems, which are able to secrete toxins directly into their prokaryotic target species. Hence,
they apparently feed on rival bacterial cells [523]. The community also contains 10 MAGs from the
phylum Bacteroidetes, with classes Ignavibacteria (seven), Bacteroidia (two), and Chitinophagia (one,
Niastella yeongjuensis). Members from the Bacteroidetes were regarded as putative scavengers during
syntrophic breakdown of benzene [427]. It has also been observed that many types of Bacteroidales
have gene clusters encoding so-called type VI secretion systems, which is apparent in gut microbiomes
[447]. It has been suggested that enteric pathogens use type VI secretion systems to antagonize symbi-
otic gut E. coli, facilitating colonization and disease progression. The phylum Chloroflexi is represented
by eight MAGs, three of which belong to families Anaerolineaceae (three, one is close to Bellilinea
caldifistulae), Ardenticatenaceae (four, one close to Ardenticatena sp.) and Thermomicrobia (one). It
is an ecologically and physiologically diverse group of bacteria, which have been detected in an increas-
ingly wide range of anaerobic habitats including sediments, hot springs, methanogenic anaerobic sludge
digesters where they are highly abundant. Chloroflexi seem to play an important role in filamentous
scaffolding around which flocs are formed to ferment intracellular compounds from lysed bacterial cells
to low molecular weight substrates to support their growth and that of others in a community [441, 442].
Anaerolineaceae bacteria occur in marine sediments. Culture-independent analyses revealed Anaero-
lineaceae as abundant primary fermenters in anaerobic digesters treating waste activated [443]. We
also noticed the presence of three MAGs belonging to the phylum Gemmatimonadetes, two of which
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were in the genus Gemmatimonas (Gemmatimonas phototrophica). The type species is Gemmatimonas
aurantiaca. This bacterium has been identified as a member of one of the top nine phyla found in soils;
yet, there are currently only six cultured isolates. Gemmatimonadetes have been found in a variety of
arid soils, such as grassland, prairie, and pasture soil, as well as eutrophic lake sediments and alpine
soils. The metabolic pathways and enzymes of this bacterium are unique and it is able to grow by both
aerobic and anaerobic respiration. Two MAGs with relatively high abundance are from the phylum
Planctomycetes, 1 from class Brocadiae (close to Candidatus Kuenenia Stuttgartiensis), and the other
from class Phycisphaerae (Phycisphaera sp.). Candidatus Kuenenia Stuttgartiensis has a special type
of free energy metabolism that takes place in a so-called anammoxosome. There, ammonium is used
as free-energy source during oxidation to dinitrogen gas with nitrite as electron acceptor and hydrazine
as intermediate compound. Carbon dioxide serves as the carbon donor for cell biomass formation.
Phycisphaerae belong to the same phylum, but are not able to perform anammox. They are sometimes
found together in anaerobic ammonium oxidizing cultures [448]. The MAG with contigs that belong
to this Phycisphaerae was, however, not selected for further analyses as it did not meet the criteria.
We found only a single MAG of the Firmicutes, and this one belongs to the family Peptococcaceae,
closely related to Desulfonispora thiosulfatigenes. Peptococcaceae are also well known for their role
in anaerobic benzene degradation and it has been suggested that they use the carboxylation pathway
[440, 439, 407, 412, 411].

A.4.17 Expression levels mRNAs

We inspected the mRNAs that were expressed at relatively high levels in each of the MAGs. It shows
that all Chloroflexi (MAGs 1, 5, 26, 31, 39, 41, 42) express relatively high levels of mRNAs encoding
peptidases, solute binding proteins and ABC-type transporters. This property is shared with 1 of the
Bacteroidetes (MAG 18). High levels of messengers encoding the key enzyme of the aerobic middle
pathway for benzene degradation are found exclusively in most of the β-proteobacteria (MAGs 19, 36,
47, 56 and 68). Some of these also express mRNA for making another key enzyme of benzene degra-
dation, 3-octaprenyl-4-hydroxybenzoate carboxy-lyase (MAGs 19, 25 and 68). We also noted some
upregulation of mRNAs encoding superoxide dismutase (SODs) in species that have their genomes in
MAGs 19, 29, and 47 all of which proteobacteria. Secretion systems of types II, III and VI may be
operational in some species as well since we found relatively high concentrations of mRNAs related to
type II in members of Armatimonadetes (MAG 22) and Actinobacteria (MAG 66), to type III in MAG
22 as well, and to type VI in members of Acidobacteria (MAG 7) and Ignavibacteria (MAG 10). Some
species (a Chloroflexi, MAG 31 and Ignavibacteria, MAG 49) have high levels of mRNA encoding re-
verse transcriptase. These enzymes are typical for certain types of bacteriophages, entities that rely on
host cells to propagate. The fate of the host cell is lysis. The species in MAG 29, a γ-proteobacterium,
has a relatively high concentration of mRNA to make a chemotaxis protein. Perhaps it uses that to find
its way to certain nutrients. Messengers indicative for making a flagellum for movement were found
in a member of the Peptococcaceae (MAG 9), and in a δ-proteobacterium (MAG 14). The latter one,
though, has also mRNAs indicative or a biofilm lifestyle so perhaps it could switch from one state to
another. Biofilm mRNAs were also apparent in the member of the Armatimonades (MAG 22), and the
γ-proteobacterium in MAG 34. These findings are in perfect agreement with the prediction of their
preferred location on the basis of comparison of mRNA levels of each species between biofilm and
liquid (see Table). We here hypothesize that the concentration of the mRNAs is a reflection of their
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abundance in either location. Overall it shows that only 5 species seem to prevail exclusively in the
liquid, 3 of which are Bacteroidetes, the 4th one a Verrucomicrobium and the 5th one in a member of
the Peptococcaceae. All others feel more comfortable in the biofilm or switch from one location to the
other. Relative high levels of expression of mRNAs encoding nitrous oxide reductases and haem copper
oxidases were also apparent. The first type of terminal oxidoreductase may well be important in Ignav-
ibacteria (MAGs 20 and 101), and Chloroflexi (MAGs 26 and 31), the second one in β-proteobacteria
(MAG 25, 36, 68 and a Verrumicrobia (MAG 30). Specific and more exclusive mRNAs are also ap-
parent in a number of species. Here is a brief description of the potential enzymes and the species that
make it. Subtilase by an Acidobacteria (MAG 7), a key enzyme of glycerol uptake and metabolism by
a Chloroflexi (MAG 42), fatty acid uptake and metabolism by an Ignavibacteria (MAG 49) and a Ver-
rumicrobia (MAG 12), enzymes for methylamine metabolism in an a-proteobacterium (MAG 16, their
genes are clustered), enzymes for formate metabolism in yet another a-protobacterium (MAG 4, genes
are clustered). Last but not least, a protocatechuate 4,5-dioxygenase in 2 different β-proteobacteria
(MAGs 19 and 68, successively). The enzyme catalyzes the oxygen dependent ring opening of 3,4-
dihydroxybenzoate to yield 4-carboxy-2-hydroxymuconate semialdehyde.

The analyses of the list of relatively high concentrations of mRNAs revealed some interesting fea-
tures that could shed some light on the observation that so many different species live together in a
bioreactor with benzene as main carbon and free energy source and nitrate as the electron acceptor.
We have good reasons to believe that there are only a few primary consumers of the benzene, the most
dominant of which is a member of the Peptococcaceae. Another niche within the community is occu-
pied by a member of the Planctomycetes that is closely related to Candidatus Kuenenia stuttgartiensis.
The latter is specialized in anaerobic ammonia oxidation (Anammox) for its free energy transduction.
Carbon dioxide rather than benzene serves as the carbon source in this species. Hence, there is no com-
petition for food between the benzene degraders and the ammonium oxidizer. Such a autotrophic niche
could make a significant contribution to the overall carbon flux and the carbon produced by it may enter
into other heterotrophic cycles in the system. Additionally, autotrophic processes can deplete electron
acceptors which then are not available anymore for benzene degradation [524, 525, 526]. Overall, the
Planctomycetes may play an important role on ramifications for benzene degradation. Other trades of
growth are obvious in the Chloroflexi. All of them have relatively high levels of mRNAs encoding both
peptidases, solute binding proteins and ABC transporters suggestive for their ability to cut larger pep-
tides or sugar polymers into smaller molecules that can be transported to the inside of the cell via these
dedicated transport systems. Once inside the cell, these molecules may serve as carbon- and free energy
source. Yet other species appear to make enzymes for fatty acid uptake and metabolism. The question
then becomes apparent what do they scavenge on. We speculate the source of these peptides, sugar
polymers and fatty acids are the remnants of dead cells that lysed either passively or actively. Such
biomass scavengers may play an important role in anaerobic systems and may influence the carbon
turnover and interfere with anaerobic/syntrophic benzene degradation. They may produce hydrogen
through the fermentation of biomass-derived compounds which might in turn inhibit benzene fermen-
tation. Moreover, important co-factors like vitamins that other members of the community including
primary benzene-degraders might not be able to produce themselves could be produced by the scaveng-
ing members of the community [527, 413, 428, 429]. Likely candidates for active lysis are the suggested
bacteriophages. In this view it is also notable that some species are able to recruit secretion systems
of either type II, III or VI. These systems allow them to penetrate a host cell and inject toxins or other
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types of effector molecule in them, ultimately resulting in cell death [446]. We inspected the locus of
the gene encoding the tube protein of the secretion system of type VI in MAG 7. It appears to be clus-
tered along with genes encoding the tip protein, baseplate, ATPase and contractile sheath. In addition,
a gene encoding lysozyme was found sandwiched between them, and this might be the specific effector
molecule of the TSS system in order to make holes in the membrane of the target cell. A similar type of
clustering of genes encoding the subunits of the TSS VI secretion system was found in MAG 10. MAGs
7 and 10 may be considered apex predators that occupy the highest trophic levels within the food web.
Alternatively, cells may lyse by the species-specific bacteriophages. It has been estimated that about
half of a community’s species may be lysed by phages [528]. The observation of high levels of mRNAs
in some of the MAGs encoding reverse transcriptase may add thought to this. The suggested niches are
a likely explanation for the variety of species in the culture. Yet, survival is not only dependent on the
rate and efficiency of free energy metabolism, but certainly also of the growth rate. Would it be slower
than the dilution rate, than the species would flush out of the culture. So, the only explanation for the
fact that there are still slow growers in the culture is the presence of the biofilm, which would retain
those organisms that have such a low growth rate. One clear example concerns the Anammox species
that doubles every 20 days [448]. Indeed, we do see mRNAs popping up in some species that indicate
their prevalence in the biofilm. Yet others favor a free-living life style with a flagellum that would allow
them to swim to more nutrient rich areas. Some species appear to be specialists in certain types of
metabolism and complement other types that we rationalized before. These are the ones for example
that have the enzymes either to metabolize methylamine, or formate or glycerol. These molecules are
likely to be formed during anaerobic digestion of the peptides and carbohydrates. This suggestion is
further corroborated by the finding that the genes encoding the mRNAs for the respective enzymes are
clustered on their respective genomes, suggestive for coordinated expression of them.

The oxygen paradox

The culture is anoxic with a completely anaerobic atmosphere. Yet we find the high-level expression
of enzymes that require oxygen for their activity like terminal oxidases, monooxygenases and dioxy-
genases in some of the species. The species with its genome in MAGs 25, 36, 56, 68, 69 and 92
have expressed their genes encoding the high affinity cbb3-type oxidase. Cytochrome c oxidases of
the Verrumicrobial-type are in MAG 30, and β-proteotype in 48. This seems peculiar in terms of effi-
ciency of making proteins that are supposedly not active under anaerobic conditions. The only likely
hypothesis is that there is a local production of oxygen where some species can benefit from. As al-
ready mentioned, the most likely oxygen producing enzyme in the (dark) culture is the NO dismutase,
the genes of which were identified both in MAG 34 and 71. Unfortunately, the latter did not meet the
criteria for further analyses, but it is evident that there is a second copy of the NO dismutase gene in the
culture. NO and N2O are freely diffusible gases and may well be exchanged between the species. The
NOD may even be fueled by externally produced NO. This is what is to be expected since many species
appear to have a NirS- or NirK-type nitrite reductase to produce NO but not an accompanying NO
reductase to consume it again. The assumption that there is a continuous flux of oxygen produced by
the NOD members then also explains the expression of oxygenases in MAGs 19 and 68, both of which
from Burkholderia species of the β-proteobacteria. They apparently rely on aerobic mid-pathways
for degradation of benzene. Both MAGs have high expression of mRNAs encoding 3-octaprenyl-4-
hydroxybenzoate carboxy-lyase, of benzoyl CoA oxygenase and of protocatechuate 4,5-dioxygenase.
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Recruitment of their enzymes allows them to convert benzene to benzoate and next either to epoxy
benzoyl-CoA or to 4-carboxy-2-hydroxymuconate-6-semialdehyde. The exact nature of the suggested
syntrophic interaction between the species with MAG 34 and the Burkholderia species remains to be
elucidated. If oxygen would be a freely diffusible gas in the culture, one would also expect defense
mechanisms against it. Indeed, we see upregulation of genes encoding Fe/Mn-type SODs in some of
the proteobacteria. Notably, these are also the species that have the monooxygenases. We hypothesize
that the oxygen produced by these oxygen producing bacteria is sufficient for growth of others. When
the cells are close enough to one another (which may be expected in a biofilm) then the local oxygen
concentration might be high enough to sustain aerobic growth [529, 530], though the rates of growth
would then be depending on the flux of oxygen production. Further, the oxygen flux might be relatively
low as carbon and free energy metabolism with oxygen as oxidant is much more efficient than anaerobic
growth, hence that increased efficiency may compensate for a lower specific oxygen uptake rate.

A.4.18 Classification scheme on benzene metabolism

We summarized the previous obtained results into a simplified view of microbial community structure.
We classified each MAG as high/medium/low/none, for their potential to be a primary consumer based
on their capacity to activate benzene and further degrade it. We classified further their functional diver-
sity based on the assigned functional groups from before (See main results) and if they are dominant or
non-dominant members of the community (See main results). Also, we looked in which phase on the
bioreactor they found with higher actively (biofilm, liquid or both) based on the transcriptomic profiles
- based on the previous results (See main results). Therefore, in relation to classification for primary
consumer of benzene, if a MAG does not contain any KOs present or transcribed in the following selec-
tions: Benzene open 01, Benzene open 02, Benzene open 03, Benzoyl CoA syn 01, Benzoyl CoA syn
02, Benzoyl CoA syn 03, then it is assigned into the class "none". if it contains present or transcribed
KOs, but the selections were not sequential coupled (open 01–CoA syn 01, open 02–CoA syn 02 and
open 03–CoA syn 03), then it assigned as class "low" and if the selection were sequential coupled then
assigned as class "medium". For a MAG to assigned as class "high" it must contain transcribed KOs on
at lease one of the three sequential couples and transcribed KOs at least in one of the sequential next
step (Benzene mid aerobic or Benzene mid anaerobic).

A.4.19 Benzene degradation pathways

MAG 16 is the only one with genes encoding enzymes for benzene degradation to benzoyl-CoA through
benzyl succinate. These enzymes are benzylsuccinate CoA-transferase, (R)-benzylsuccinyl-CoA de-
hydrogenase, E-phenylitaconyl-CoA hydratase and benzoylsuccinyl-CoA thiolase Figure A.42. An-
other few MAGs appear to degrade benzene through benzoate using UbiD/UbiX-related carboxylases,
benzoate-CoA ligase and benzoyl-CoA reductase. Relatively high transcription levels of their mRNAs
are found in MAGs 6 and 9, and lower levels in MAGs 19, 25 and 68 Figure A.43. We did not find
MAGs that have a full suite of genes for benzene degradation via the hydroxybenzene route. Apparently,
benzene is converted to benzoyl-CoA through benzoate and/or hydroxybenzoate routes by most of the
MAGs that belong to the primary consumers. The route through benzyl succinate may only be used by
MAG 16. Further metabolism of benzoyl-CoA may proceed through a strict anaerobic route or via one
that includes an oxygen dependent benzoyl-CoA oxygenase. The anaerobic route requires genes that
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encode benzoyl-CoA reductase, cyclohexa-1,5-dienecarbonyl-CoA hydratase, 6-hydroxycyclohex-1-
ene-1-carbonyl-CoA dehydrogenase, 6-oxocyclohex-1-enecarbonyl- CoA hydrolase. Their transcripts
were found at relatively high levels in MAGs 4, 6, 9 and 18 and to a lesser extent in MAGs 14, 19,
25, 68 and 101. Interestingly, genes (BamB/BamC) related to benzoyl-CoA reductase were found ex-
clusively in MAG 9 on an even higher transcription level than the rest Figure A.45. The route that
includes benzoyl-CoA oxygenase may be operative in a few Proteobacterial MAGs (MAGs 4, 19, 25,
36, 47, 56 and 68) as they contain genes for benzoyl-CoA 2,3- epoxidase, benzoyl-CoA-dihydrodiol
lyase, 3,4-dehydroadipyl-CoA semialdehyde dehydrogenase, acetyl-CoA acyltransferase and 3-oxo-
5,6-didehydrosuberyl-CoA/3-oxoadipyl-CoA thiolase. Also, although no complete sequential genes to
complete the pathway found in any MAG, it is surprising that in this anoxic environment we find genes
indicating toluene monooxygenase and phenol hydroxylase. Those proteins oxidise benzene to cate-
chol and catechol 2,3-dioxygenase activates oxidative ring cleavage of catechol, which is then further
converted to pyruvate and acetyl-CoA by enzymes of the lower pathway - indicates a possible syn-
trophic breakdown of benzene by aerobic degradation [411] (See Figure A.46). Overall, this result
indicates that only a few MAGs activate and further degrade benzene as the primary consumers, while
the majority of the community does not and occupies other niches, ultimately resulting in a complex
and extended food web.
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Table A.11: Basic genome information, quality and relative RNA & DNA abundance of all MAGs.

Genome information MAG quality Abundance

MAGs Total length
Contig
count

N50
GC
content

C % R % DNA
RNA -
Biofilm

RNA -
Liquid

Orf
count

000 60499047 15403 8098 60.47 100.00 842.25 0.35 2.16 3.71 64790
001 3435559 60 121528 59.27 94.37 1.41 24.34 5.57 0.66 3329
002 1944298 36 56800 36.61 84.51 2.82 15.27 3.71 2.57 1727
003 3959694 208 30344 40.77 98.59 12.68 7.01 27.07 4.20 3715
004 3822053 27 206048 65.67 100.00 2.82 4.22 0.35 0.02 3739
005 3739161 57 149802 54.03 95.77 2.82 4.60 3.01 0.23 3610
006 3311055 120 60502 64.13 97.18 7.04 3.57 1.94 0.58 3377
007 3335773 15 392789 53.74 95.77 1.41 3.16 0.20 0.02 3089
008 1249458 26 26585 62.65 47.89 0.00 2.99 3.29 0.27 1153
009 4248075 93 87433 44.35 98.59 0.00 2.97 36.07 75.89 4063
010 3685673 287 23711 33.34 97.18 1.41 2.17 0.47 0.04 3522
011 253085 19 65316 59.63 0.00 0.00 2.18 2.76 1.96 256
012 4597136 78 79543 62.51 94.37 2.82 1.43 0.55 0.00 3791
013 3008466 28 331130 58.98 97.18 0.00 1.49 1.03 0.06 2470
014 8076467 148 81157 69.94 95.77 0.00 1.26 0.10 0.01 7282
015 242034 32 51870 57.42 0.00 0.00 1.60 0.61 0.22 246
016 4189325 81 178727 62.81 97.18 5.63 1.11 0.20 0.03 3974
017 2684626 610 6114 69.99 87.32 4.23 0.98 0.16 0.05 2945
018 3086012 19 283578 32.96 94.37 1.41 1.03 0.98 1.99 2707
019 4074397 166 48779 69.79 91.55 7.04 0.93 0.10 0.06 4037
020 3687606 59 107749 40.58 97.18 1.41 0.89 1.17 1.37 3009
021 3038481 56 54077 59.94 88.73 0.00 0.83 0.08 0.03 758

021.1 822707 39 23312 59.08 0.00 0.00 0.84 1.15 0.50 2562
022 3247912 35 94516 63.41 94.37 1.41 0.76 0.13 0.01 2934
023 4665751 234 41764 61.10 100.00 7.04 0.71 0.20 0.06 4582
024 3552934 445 13239 67.68 85.92 7.04 0.65 0.08 0.03 3681
025 3756427 64 109280 70.77 92.96 0.00 0.65 0.06 0.02 3504
026 3639465 40 253413 61.13 95.77 0.00 0.54 0.12 0.00 3166
027 2308863 797 3858 66.45 83.10 14.08 0.52 0.73 0.66 2936
028 7069549 1158 9164 71.03 74.65 8.45 0.43 0.08 0.01 7201
029 2957553 179 30579 68.65 97.18 8.45 0.40 0.11 0.06 2670
030 4181919 23 212925 66.55 98.59 1.41 0.33 0.15 0.32 3339
031 4931782 51 149493 59.49 97.18 1.41 0.31 0.11 0.01 4337
032 3328800 100 101615 36.55 100.00 0.00 0.31 0.04 0.01 2817
033 2779610 39 77228 53.96 83.10 1.41 0.28 0.12 0.00 2398
034 2554880 270 16787 62.66 91.55 9.86 0.25 0.05 0.01 2572
035 3845035 144 57260 56.22 92.96 0.00 0.23 0.13 0.00 3539
036 4639052 75 136744 70.10 94.37 4.23 0.21 0.10 0.03 4369
037 3655018 572 11089 66.75 97.18 2.82 0.25 0.07 0.01 3990
038 5538605 73 111952 67.75 100.00 2.82 0.21 0.03 0.00 4551
039 2737729 173 23317 71.08 92.96 2.82 0.20 0.02 0.00 2722
041 4421002 227 28430 63.52 94.37 1.41 0.20 0.07 0.00 3911
042 3428056 72 60132 68.40 90.14 2.82 0.19 0.03 0.00 3182
043 3659643 298 22797 72.94 63.38 1.41 0.25 0.12 0.01 2981
044 5193204 420 20074 76.37 38.03 1.41 0.21 0.05 0.00 4122
045 5148383 324 49748 62.30 98.59 36.62 0.16 0.07 0.05 5182
046 2515780 20 101247 46.99 87.32 0.00 0.31 0.10 0.03 2159
047 4353019 111 83634 61.42 98.59 5.63 0.14 0.07 0.02 4008
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048 4940754 322 36850 61.17 98.59 0.00 0.14 0.08 0.01 4443
049 3998798 253 42236 35.87 97.18 1.41 0.20 0.09 0.03 3621
050 3005714 199 26951 61.50 95.77 2.82 0.20 0.10 0.01 2596
051 4088151 870 8436 70.83 98.59 38.03 0.12 0.03 0.00 4835
052 3442950 118 62564 65.04 87.32 11.27 0.14 0.35 1.27 3333
053 5493707 338 54079 68.09 95.77 91.55 0.13 0.07 0.04 5398
054 2864095 278 18657 69.50 49.30 11.27 0.13 0.10 0.07 2879
055 3455486 403 14004 70.78 35.21 11.27 0.12 0.04 0.01 3317
056 5495738 515 30096 63.45 100.00 7.04 0.08 0.04 0.02 5384
057 2617295 341 13652 66.00 78.87 4.23 0.26 0.58 0.48 2830
058 5192471 184 83902 46.87 97.18 1.41 0.21 0.20 0.14 4207
059 3146082 29 339977 50.56 95.77 0.00 0.21 0.10 0.00 2698
060 9936556 1032 18963 60.53 92.96 22.54 0.11 0.07 0.00 8748
061 1654255 372 7287 62.23 57.75 23.94 0.17 0.45 0.57 1969
062 5005696 178 48554 55.90 98.59 1.41 0.12 0.02 0.01 4898
063 6354922 1647 6194 74.93 100.00 38.03 0.09 0.01 0.00 7567
064 3202270 281 22637 67.43 100.00 1.41 0.11 0.01 0.00 3140
065 6744885 2039 8458 50.26 85.92 43.66 0.13 0.07 0.03 8033
066 2817429 255 24209 65.56 91.55 1.41 0.13 0.02 0.01 2970
067 3530919 315 16384 40.32 97.18 5.63 0.13 0.08 0.10 3132
068 4322486 485 13567 68.46 95.77 4.23 0.11 0.05 0.04 4388
069 2926801 173 30327 35.28 94.37 1.41 0.10 0.13 0.41 2663
070 3525412 94 55493 55.04 94.37 1.41 0.14 0.09 0.01 3056
071 5925308 635 40486 70.34 92.96 29.58 0.11 0.01 0.00 5783
072 8758907 625 39721 57.95 94.37 28.17 0.10 0.02 0.00 7748
073 2705742 1295 2274 64.66 35.21 9.86 0.10 0.01 0.00 3576
074 3806583 556 13834 67.89 66.20 11.27 0.08 0.02 0.01 4059
075 7109454 1484 8254 63.41 97.18 45.07 0.07 0.11 0.00 7136
076 2140732 272 11740 69.90 90.14 2.82 0.09 0.03 0.00 2104
077 4673905 672 15886 67.63 70.42 25.35 0.08 0.07 0.02 4505
078 2641288 777 4822 67.84 33.80 4.23 0.16 0.43 0.44 3147
079 5792266 2118 3367 72.49 70.42 26.76 0.08 0.01 0.00 7247
080 3128734 1245 2943 62.78 64.79 43.66 0.08 0.02 0.01 4077
081 5709272 1125 10355 57.80 70.42 26.76 0.06 0.05 0.01 6001
082 5577205 1316 6874 71.38 83.10 32.39 0.06 0.01 0.00 6295
083 5283378 1030 9475 70.63 69.01 32.39 0.07 0.02 0.00 5778
084 2261235 265 13840 73.14 91.55 5.63 0.10 0.01 0.01 2392
085 3682898 1079 4545 65.41 50.70 14.08 0.07 0.03 0.03 3842
086 3074666 117 42493 39.11 97.18 1.41 0.08 0.03 0.04 2741
087 5847895 994 9481 69.31 94.37 14.08 0.08 0.03 0.01 5942
088 2578089 976 2995 69.82 40.85 9.86 0.06 0.01 0.00 3210
089 3563143 1664 2337 63.32 69.01 21.13 0.08 0.04 0.00 4352
090 2598559 21 170057 67.04 95.77 0.00 0.12 0.04 0.00 2334
091 6576024 2551 3277 60.50 91.55 32.39 0.05 0.03 0.03 7841
092 3044225 955 3959 69.89 92.96 5.63 0.06 0.03 0.03 3717
093 2464376 1032 2622 65.26 63.38 50.70 0.06 0.05 0.02 3113
094 6323288 1399 8343 65.75 64.79 9.86 0.06 0.03 0.00 6159
095 6168783 2301 3349 62.18 90.14 64.79 0.05 0.03 0.01 6785
096 2125011 468 6710 65.84 95.77 4.23 0.06 0.02 0.01 2334
097 2821991 1438 2096 71.17 39.44 2.82 0.05 0.02 0.01 3804
098 2994759 1384 2223 59.24 36.62 8.45 0.05 0.04 0.02 4057
099 6977932 3497 2130 63.52 47.89 11.27 0.05 0.04 0.00 8821
100 2774929 1278 2398 66.79 66.20 57.75 0.05 0.02 0.01 3562
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101 3233764 60 74637 35.73 95.77 0.00 0.10 0.06 0.06 2843
102 6777504 2482 3593 59.17 94.37 50.70 0.05 0.04 0.00 8119
103 4174659 2117 2127 67.18 81.69 33.80 0.05 0.03 0.00 5111
104 2222925 1197 1898 66.91 45.07 22.54 0.05 0.02 0.00 3137
105 4015081 2335 1741 62.23 61.97 28.17 0.04 0.02 0.00 5295
106 3005903 1644 1889 61.53 67.61 8.45 0.05 0.03 0.00 3923
107 2106025 1202 1818 73.40 50.70 2.82 0.04 0.01 0.00 2854
108 4845334 2986 1576 65.74 54.93 18.31 0.04 0.03 0.01 6673
109 7986166 4519 1768 57.44 83.10 76.06 0.04 0.03 0.01 11251
110 2600002 1655 1546 54.49 59.15 14.08 0.04 0.05 0.01 3839
111 3688075 2205 1699 70.10 67.61 38.03 0.04 0.01 0.00 5152

Sums 500649046 91303 100.00 100.00 100.00 517768

The grey rows are the filtered out MAGs based on the quality and manual refinement.

Table A.13: Environmental variables measured throughout the succession experiment.

Sample
ID Days

Cells
No

Benzene
(mM)

Nitrate
(mM)

Nitrite
(mM)

Nicotinic
acid (pM)

Pantothenic
acid (pM)

PABA
(pM)

Biotin
(pM)

Vitamin
B12 (pM)

1 B1III 0 4.43 0.09 8.60 0.02 150.41 152.32 467.95 147.05 25.86
2 C1I 0 3.97 0.11 8.50 0.04 134.34 16.68 294.85 118.22 21.89
3 C1III 0 4.23 0.09 8.38 0.04 102.20 21.37 352.55 156.76 24.40
4 A2I 7 4.94 0.11 8.28 0.04 150.41 39.34 64.05 49.88 19.27
5 A2II 7 4.83 0.12 8.24 0.04 37.92 20.29 0.00 59.92 28.32
6 A2III 7 4.85 0.11 8.22 0.04 0.00 6.93 0.00 53.12 12.49
7 A2IV 7 4.80 0.10 8.22 0.04 0.00 236.42 283.88 69.31 63.64
8 B2I 7 5.48 0.10 8.02 0.04 0.00 14.08 563.73 92.63 92.83
9 B2II 7 5.19 0.11 7.98 0.04 0.00 8.99 366.40 93.93 63.64
10 B2III 7 5.40 0.11 7.96 0.04 0.00 0.00 158.68 91.66 92.83
11 B2IV 7 5.62 0.11 7.96 0.04 221.11 7.54 571.81 127.94 118.52
12 C2I 7 5.61 0.11 7.94 0.26 0.00 0.00 778.95 119.19 107.42
13 C2II 7 5.06 0.10 7.90 0.12 0.00 32.77 738.56 94.90 94.58
14 C2III 7 6.05 0.09 7.90 0.12 0.00 44.76 96.94 114.66 116.77
15 C2IV 7 5.39 0.11 7.84 0.16 0.00 0.00 0.00 102.03 100.42
16 A3I 14 5.05 0.08 7.32 0.48 0.00 4.94 0.00 45.67 5.67
17 A3II 14 5.13 0.08 7.30 0.54 0.00 0.00 0.00 3.85 0.00
18 A3III 14 5.19 0.08 7.26 0.56 0.00 0.00 0.00 0.00 0.00
19 A3IV 14 5.14 0.08 7.22 0.56 0.00 0.00 0.00 34.01 0.00
20 B3I 14 5.25 0.10 7.78 0.18 0.00 0.00 0.00 0.00 0.00
21 B3II 14 5.65 0.09 7.78 0.24 0.00 0.00 0.00 44.37 0.00
22 B3III 14 5.01 0.11 7.70 0.06 0.00 0.00 0.00 68.67 0.00
23 B3IV 14 5.26 0.10 7.68 0.28 0.00 0.00 0.00 37.25 0.00
24 C3I 14 5.95 0.11 7.68 0.30 0.00 0.00 0.00 36.60 0.00
25 C3II 14 6.00 0.10 7.68 0.30 0.00 0.00 0.00 85.83 69.48
26 C3III 14 5.93 0.06 7.20 0.56 0.00 0.00 0.00 5.73 5.39
27 C3IV 14 6.08 0.11 7.66 0.34 0.00 0.00 0.00 17.26 0.00
28 A4I 18 5.24 0.05 7.18 0.56 0.00 0.00 0.00 0.00 0.00
29 A4II 18 5.30 0.10 7.60 0.36 0.00 0.00 0.00 2.68 0.00
30 A4III 18 5.22 0.05 7.16 0.56 0.00 0.00 0.00 0.00 0.00
31 A4IV 18 5.35 0.07 7.14 0.56 0.00 0.00 0.00 0.00 0.00
32 B4I 18 5.32 0.08 7.12 0.56 0.00 0.00 0.00 0.00 0.00
33 B4II 18 5.57 0.08 7.12 0.56 0.00 0.00 0.00 0.00 0.00
34 B4III 18 5.35 0.10 7.56 0.42 0.00 0.00 0.00 0.00 0.00
35 B4IV 18 5.22 0.08 7.12 0.56 0.00 0.00 0.00 96.84 106.84
36 C4I 18 5.92 0.10 7.54 0.40 0.00 0.00 0.00 7.45 0.00
37 C4II 18 5.90 0.10 7.54 0.52 0.00 273.60 0.00 111.74 98.67
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38 C4III 18 6.18 0.10 7.52 0.44 0.00 0.00 0.00 66.72 0.00
39 C4IV 18 6.15 0.12 7.52 0.46 0.00 0.00 0.00 0.00 0.00
40 A5I 22 5.64 0.09 7.50 0.46 0.00 0.00 0.00 0.00 0.00
41 A5II 22 5.30 0.01 6.84 0.62 0.00 0.00 877.04 45.34 77.65
42 A5III 22 4.56 0.10 7.50 0.46 0.00 0.00 0.00 0.00 0.00
43 A5IV 22 5.31 0.07 7.10 0.56 0.00 0.00 0.00 0.00 0.00
44 B5I 22 5.87 0.04 7.12 0.58 0.00 0.00 0.00 3.43 0.00
45 B5II 22 5.74 0.08 7.10 0.58 0.00 0.00 0.00 0.00 0.00
46 B5III 22 5.53 0.09 7.46 0.48 0.00 0.00 0.00 74.17 94.58
47 B5IV 22 5.87 0.03 6.78 0.62 0.00 0.00 0.00 0.00 0.00
48 C5I 22 6.15 0.08 7.08 0.56 0.00 0.00 0.00 9.39 0.00
49 C5II 22 5.55 0.08 7.08 0.62 0.00 0.00 0.00 0.00 0.00
50 C5III 22 5.47 0.05 7.06 0.60 0.00 0.00 0.00 0.00 0.00
51 C5IV 22 5.80 0.11 7.46 0.48 0.00 0.00 0.00 0.00 0.00
52 A6I 26 5.50 0.01 6.78 0.62 0.00 0.00 0.00 0.00 0.00
53 A6II 26 5.29 0.01 6.76 0.62 0.00 0.00 0.00 0.00 0.00
54 A6III 26 5.30 0.01 6.76 0.62 0.00 0.00 0.00 0.00 0.00
55 A6IV 26 5.62 0.09 7.00 0.60 0.00 0.00 0.00 0.00 81.74
56 B6I 26 6.22 0.03 6.76 0.62 0.00 0.00 0.00 0.00 0.00
57 B6II 26 6.12 0.01 6.76 0.64 0.00 0.00 0.00 0.00 0.00
58 B6III 26 5.30 0.01 6.74 0.64 0.00 0.00 0.00 0.00 0.00
59 B6IV 26 6.10 0.09 7.44 0.44 0.00 638.87 0.00 103.32 101.00
60 C6I 26 6.27 0.01 6.74 0.64 0.00 0.00 0.00 0.00 0.00
61 C6II 26 6.33 0.09 6.98 0.62 0.00 0.00 0.00 0.00 0.00
62 C6III 26 6.10 0.02 6.72 0.68 0.00 0.00 0.00 0.00 0.00
63 C6IV 26 6.20 0.11 7.40 0.48 0.00 0.00 0.00 0.00 0.00
64 A7I 30 5.16 0.01 6.72 0.64 0.00 0.00 0.00 0.00 0.00
65 A7II 30 5.18 0.04 6.92 0.62 0.00 0.00 0.00 0.00 0.00
66 A7III 30 5.19 0.02 6.68 0.64 0.00 0.00 0.00 0.00 0.00
67 A7IV 30 5.07 0.01 6.66 0.64 0.00 0.00 0.00 0.00 0.00
68 B7I 30 5.99 0.10 7.40 0.50 0.00 0.00 0.00 0.00 0.00
69 B7II 30 5.91 0.11 7.40 0.50 1311.23 0.00 1494.43 134.74 136.03
70 B7III 30 5.85 0.01 6.62 0.64 0.00 0.00 0.00 0.00 0.00
71 B7IV 30 5.52 0.07 6.88 0.62 0.00 0.00 0.00 0.00 0.00
72 C7I 30 6.21 0.01 6.60 0.64 0.00 0.00 0.00 0.00 0.00
73 C7II 30 5.86 0.08 6.86 0.62 0.00 0.00 0.00 0.00 0.00
74 C7III 30 5.86 0.10 7.34 0.50 0.00 0.00 0.00 0.00 0.00
75 C7IV 30 5.50 0.01 6.58 0.64 0.00 0.00 0.00 0.00 0.00
76 A8I 34 5.45 0.01 6.58 0.64 0.00 0.00 0.00 0.00 0.00
77 A8II 34 5.32 0.01 6.48 0.66 0.00 0.00 0.00 0.00 0.00
78 A8III 34 5.33 0.06 6.86 0.60 0.00 0.00 0.00 0.00 0.00
79 A8IV 34 5.43 0.01 6.48 0.64 0.00 0.00 0.00 0.00 0.00
80 B8I 34 6.53 0.01 6.42 0.66 0.00 0.00 0.00 0.00 0.00
81 B8II 34 6.25 0.01 6.38 0.66 0.00 0.00 0.00 0.00 0.00
82 B8III 34 6.24 0.01 6.32 0.78 0.00 0.00 0.00 0.00 0.00
83 B8IV 34 6.02 0.11 7.34 0.50 0.00 0.00 0.00 121.46 129.61
84 C8I 34 6.15 0.01 6.28 0.72 0.00 0.00 0.00 0.00 0.00
85 C8II 34 6.05 0.13 7.32 0.52 0.00 0.00 0.00 125.67 122.60
86 C8III 34 5.92 0.01 6.20 0.72 0.00 0.00 0.00 0.00 0.00
87 C8IV 34 6.12 0.01 6.20 0.66 0.00 0.00 0.00 0.00 0.00

Cell No: equivalent cell number (Log10 mL), see materials and methods for details. PABA: p-
Aminobenzoic acid
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Table A.12: Taxonomy assignment overview of the selected MAGs.

GTDB Taxonomy of MAGs Between exp. Silva (version 132 SSU ref. Nr99) taxonomy of succession experiment
MAGs Phylum Class Genus OTUs Ide. Ide. Bacteria taxonomy
001 Chloroflexota Anaerolineae UBA7227 100 Anaerolineae;Anaerolineales;Anaerolineaceae;U;
003 Planctomycetota Brocadiae Kuenenia 99.7 Brocadiae;Brocadiales;Brocadiaceae;Candidatus Kuenenia;
004 Proteobacteria Alphaproteobacteria Pseudorhodoplanes 525650078 93.7 100 Alphaproteobacteria;Rhizobiales;Xanthobacteraceae;U;
005 Chloroflexota Anaerolineae OLB14 97.6 Anaerolineae;Anaerolineales;Anaerolineaceae;U;
006 Proteobacteria Gammaproteobacteria UTPRO2
007 Acidobacteriota Blastocatellia OLB17 98.8 Blastocatellia (Subgroup 4);Blastocatellales;Blastocatellaceae;OLB17;
009 Firmicutes Thermincolia 624837510 100 97.17 Clostridia;Clostridiales;Peptococcaceae;Thermincola;
010 Bacteroidota Ignavibacteria Ignavibacterium 98.6 Ignavibacteria;Ignavibacteriales;PHOS-HE36;
012 Verrucomicrobiota Verrucomicrobiae 226057524 90.3
014 Myxococcota Polyangia
016 Proteobacteria Alphaproteobacteria Hyphomicrobium
018 Bacteroidota Bacteroidia 942897628 100 98.3 Bacteroidia;Flavobacteriales;Cryomorphaceae;U;
019 Proteobacteria Gammaproteobacteria SCN-69-89
020 Bacteroidota Ignavibacteria
022 Armatimonadota Fimbriimonadia 276191148 100
023 Proteobacteria Alphaproteobacteria Hyphomicrobium
025 Proteobacteria Gammaproteobacteria PALSA-1003
026 Chloroflexota Anaerolineae Promineofilum 97.7 Anaerolineae;Ardenticatenales;U;
029 Proteobacteria Gammaproteobacteria 826979979 100 98.4 Gammaproteobacteria;Xanthomonadales;Xanthomonadaceae;Arenimonas;
030 Verrucomicrobiota Verrucomicrobiae Didemnitutus 100 Verrucomicrobiae;Opitutales;Opitutaceae;Lacunisphaera;
031 Chloroflexota Anaerolineae OLB15
032 Bacteroidota Bacteroidia OLB10 98.2 Bacteroidia;Sphingobacteriales;AKYH767;
034 Proteobacteria Gammaproteobacteria
036 Proteobacteria Gammaproteobacteria Hydrogenophaga
038 Gemmatimonadota Gemmatimonadetes SCN-70-22 170800226 100 99.5 Gemmatimonadetes;Gemmatimonadales;Gemmatimonadaceae;U;
039 Chloroflexota Ellin6529 Palsa-1032 97.1 Chloroflexi;KD4-96;
041 Chloroflexota Anaerolineae ZC4RG36
042 Chloroflexota Chloroflexia
047 Proteobacteria Gammaproteobacteria Pusillimonas 607377144 95.75 98.86 Gammaproteobacteria;Betaproteobacteriales;Burkholderiaceae;Eoetvoesia;
048 Proteobacteria Gammaproteobacteria Dokdonella
049 Bacteroidota Ignavibacteria
050 Bacteroidota UBA10030 2-02-FULL-55-14
056 Proteobacteria Gammaproteobacteria Comamonas 97.5 Gammaproteobacteria;Betaproteobacteriales;Burkholderiaceae;Comamonas;
062 Proteobacteria Alphaproteobacteria Ochrobactrum 97.8 Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Defluviimonas;
064 Actinobacteriota Acidimicrobiia
066 Actinobacteriota Actinobacteria Cryobacterium 167856346 96.7 98.4 Actinobacteria;Micrococcales;Microbacteriaceae;Leifsonia;
067 Bacteroidota Ignavibacteria UTCHB3
068 Proteobacteria Gammaproteobacteria SCN-69-89 98.9 Gammaproteobacteria;Betaproteobacteriales;Rhodocyclaceae;Azoarcus;
069 Bacteroidota Bacteroidia
070 Bacteroidota UBA10030 UBA6688
076 Gemmatimonadota Gemmatimonadetes
084 Actinobacteriota Thermoleophilia
086 Bacteroidota Bacteroidia Ferruginibacter 171842870 100 97.2 Bacteroidia;Chitinophagales;Chitinophagaceae;Ferruginibacter;
090 Gemmatimonadota Gemmatimonadetes Fen-1231 758662476 100
092 Proteobacteria Alphaproteobacteria 623980803 100 97 Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Defluviimonas;
096 Actinobacteriota Thermoleophilia 67-14 97.9 Thermoleophilia;Solirubrobacterales;67-14;
101 Bacteroidota Ignavibacteria

The first column indicates the number of the MAG. Columns 2-4 is the GTDB taxonomy, keep in
mind the recent change proposed in [531] in comparision to NCBI taxonomy. Columns 5-6 are the
significant sequence matches (>90%) between the 16S RNA genes of MAGs from the bioreactor and
the succession experiment. Columns 7-8 are the taxonomy of significant sequence matches (>97%)
between the 16S RNA genes of MAGs from the bioreactor and the Silva database, 132 SSU ref. Nr 99
version (The taxonomic levels of domain and phylum were matched and therefore excluded).
*U = uncultured, Ide. = Identity, C = Completion, R = Redundancy.
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Table A.14: Ionization modes, mass transitions, operating parameters, limits of quantification, and
chromatographic retention times for the measured vitamins.

Compound Ionization mode
Precursor ion >

product ion (m/z)
Declustering
potential (V)

Collision
energy (V)

Collision exit
potential (V)

LOQ (ppm) *
Chromatographic

retention time (min)
4-Aminobenzoic acid negative 136 [M −H]− > 92 -52 -16 -3 0.004 7.2
Biotin positive 245 [M +H]+ > 227 63 21 11 0.002 8.2
Lipoic acid negative 205 [M −H]− > 171 -40 -11 -10 0.016 9.5
Nicotinic acid positive 124 [M +H]+ > 80 75 30 12 0.016 2.4
Pantothenic acid positive 220 [M +H]+ > 90 72 23 5 0.004 6.3
Riboflavin positive 377 [M +H]+ > 243 96 33 13 0.032 8.5
Vitamin B12 positive 700 [M + 2Na]+ > 658 113 39 33 0.016 7.6

*LOQ: Limit of quantification (defined as the concentration of the lowest standard with a signal/noise
ratio >10 and an accuracy of 70-130%).

Table A.15: Mass transitions, limits of detection, and chromatographic retention times for compounds
used for data-independent target analysis.

Compound
Precursor ion >
product ion (m/z)

LOD (ppm) *
Chromatographic retention
time (min)

4-Hydroxybenzoate 137 [M −H]− > 93 0.01 10.1
Benzoate 121 [M −H]− > 72 0.01 12.6
Benzylsuccinate 207 [M −H]− > 163 0.01 12.9

*Limit of detection (defined as the concentration of the lowest standard with an identifiable chromato-
graphic peak of the precursor ion and, if applicable, product ion).

Table A.16: Mass ranges used for data-dependent auto-MS/MS analysis of suspected metabolites.

Compound Targeted mass range (m/z)
2-Hydroxy-cyclohexanecarboxylate 143.01-143.21
2-Oxo-cyclohexanecarboxylate 141.96-142.16
Catechol 108.93-109.13
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Table A.17: Taxonomy assignment of more significant correlated OTUs of the succession experiment
with cultures stage.

OTUs Phylum Class Order Family Genus (Species)
OTU851020915 Proteobacteria Alphaproteobacteria Rhizobiales Brucellaceae Ochrobactrum
OTU501058114 Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas (stutzeri)
OTU474979920 Proteobacteria Betaproteobacteria Rhodocyclales Rhodocyclaceae Azoarcus
OTU152847281 Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae Thermomonas
OTU596667673 Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Escherichia-Shigella
OTU819133079 Bacteroidetes Flavobacteria Flavobacteriales Flavobacteriaceae Chryseobacterium
OTU888962565 Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae Undibacterium
OTU27733144 Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Comamonas
OTU344128085 Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae unclassified_Comamonadaceae
OTU32483051 Proteobacteria Alphaproteobacteria Rhizobiales Rhodobiaceae unclassified_Rhodobiaceae
OTU121064001 Proteobacteria Betaproteobacteria Burkholderiales Burkholderiaceae Limnobacter
OTU858316386 Firmicutes Clostridia Clostridiales Peptococcaceae Thermincola
OTU758662476 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatimonas
OTU244476266 unclassified_Bacteria unclassified_Bacteria unclassified_Bacteria unclassified_Bacteria unclassified_Bacteria
OTU575006217 unclassified_Bacteria unclassified_Bacteria unclassified_Bacteria unclassified_Bacteria unclassified_Bacteria
OTU101622224 Verrucomicrobia Opitutae Opitutales Opitutaceae Opitutus

Selection is based on random forest variable importance and PERMANOVA analysis

Table A.18: Metatranscriptomics sequence information summary.

Samples read number
Reads that passed
quality filtering (%)

Non - rRNA read (%) mapped

B1 46403410 1184499 (2.55) 978947 (2.1) 294033
B3 6768045 420773 (6.21) 378016 (5.58) 126825
B4 12225282 4029257 (32.95) 3478129 (28.45) 1467647
E1 1169416 670466 (57.33) 549856 (47.01) 305703
E2 6015250 2709161 (45.03) 2232302 (37.11) 1265591
E3 11080970 1426565 (12.87) 1158859 (10.45) 661037

B for the bioreactor biofilm and E for liquid samples during growth on benzene and nitrate. B1 (grey)
was excluded because it was a partial mixture of both liquid and biofilm phases.
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Figure A.31: Relation of MAGs RNA abundance with DNA abundance (biofilm samples).
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a) for RNA derived from the biofilm. b) for RNA derived from the liquid phase. The color of the points
indicates the quality of the MAGs. The positive correlation varies from moderate to weak, respectively
(biofilm: r2 = 0.556, liquid: r2 = 0.286). The most transcribed MAGs, 3 and 9, were not the
most abundant ones as judged by their DNA. Instead, MAG 1 and MAG 2 were the most abundant in
DNA content. Specifically MAG 1 was represented in the biofilms community with 25% relative DNA
abundance but only with 5.6% relative RNA abundance, suggesting that they are relatively inactive
or dead. Alternatively, biases during the DNA extraction cannot be excluded as it is illustrated for
example in various studies that the abundance of gram-positive bacteria may be underestimated due to
the difficulty of breaking their thicker cell wall [532].
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Figure A.32: Volcano plot indicate the significant different RNA content of MAGs between biofilm and
liquid phase.

1

3

4

5

6

7

9

10

12

14

16

18

22

23

25

26

30

31

32

34

36

38

39

41

42

47

48

50

56
62

64

66

69 70

76

90

0

2

4

6

−2.5 0.0 2.5 5.0 7.5
log2 fold change

−
lo

g1
0 

p−
va

lu
e

Significant higher:

a

a

a

Biofilm
Liquid
No Sig.

Green dots (right side) represent MAGs that are more abundant in biofilm samples, red dots (left side)
those that are more abundant in the liquid phase.

199 APPENDIX A. APPENDIX



Figure A.33: Relationship between MAGs transcribed KOs and the total KOs count.
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Figure A.34: Functional landscape of the selected MAGs with their taxonomy.
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Figure A.35: Venn diagram based on KO IDs.

All MAGs Group A

Group B Group C

All MAGs separated on three groups (top left), MAGs of group A separated on two clusters (top right),
MAGs of group B separated on three clusters (bottom left), MAGs of group C separated on three
clusters (bottom right). It shows the number of KOs that are shared or unique between the groups and
between clusters, and as such it indicates the extent of functional diversity.
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Figure A.36: Feature selection result to discriminate the three different MAGs groups.
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A) An overview heatmap for the presence/absence (red/blue) KO that discriminate the 3 functional
group of MAGs. B) The pathway coverage % of KEGG pathways that discriminate the 3 functional
group of MAGs. The major discriminator involves genes for lipopolysaccharide biosynthesis, which
were found specifically more in MAGs from group C and B, as opposed to those from group A
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Figure A.37: Heatmap of the flagellar system.
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The presence and absence (black/white) of the KOs and color scale indicating the strength of tran-
scription. It provides data for the hypothesis that flagellar systems are important for survival of some
members of the community.
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Figure A.38: Heatmap of the pilus system.
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tion. It provides data for the hypothesis that pilus systems are important for survival of some members
of the community.
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Figure A.39: Bacteria secretion systems
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A) The pathway coverage of MAGs on bacteria secretion systems and B) the heatmap of MAGs with the
corresponding KOs, with the presence and absence (black/white) of the KOs and color scale indicating
the strength of transcription. It provides data for the hypothesis that bacterial secretion systems are
important for survival of some members of the community.

Figure A.40: The peripheral anaerobic benzene degradation pathways up to the level of benzoyl CoA
intermediates.
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Figure A.41: The central anaerobic benzene degradation pathways.
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Figure A.42: Heatmap representing opening of benzene ring and conversion to benzoyl-CoA through
benzylsuccinate.
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The presence and absence (black/white) of the KOs and color scale indicating the strength of transcrip-
tion. This selection is the same as KEGGs module M00418. It shows the KOs involved in the upper
pathway in Figure A.40.
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Figure A.43: Heatmap representing opening of benzene ring and conversion to benzoyl-CoA through
benzoate.
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The presence and absence (black/white) of the KOs and color scale indicating the strength of transcrip-
tion. It shows the KOs involved in the middle pathway in Figure A.40.
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Figure A.44: Heatmap representing opening of benzene ring and conversion to benzoyl-CoA through
hydroxybenzene.
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The presence and absence (black/white) of the KOs and color scale indicating the strength of transcrip-
tion. It shows the KOs involved in the lower pathway in Figure A.40.
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Figure A.45: Heatmap representing anaerobic conversion of benzoyl-CoA to hydroxipimelyl-CoA.
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The presence and absence (black/white) of the KOs and color scale indicating the strength of transcrip-
tion. This selection is the same with KEGGs module M00541. It shows the KOs involved in the right
pathway in Figure A.41 A.
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Figure A.46: Heatmap representing semi-aerobic conversion of benzoyl-CoA to acetyl-CoA and
succinyl-CoA.
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The presence and absence (black/white) of the KOs and color scale indicating the strength of transcrip-
tion. It shows the KOs involved in the left pathway in Figure A.41 A.
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Figure A.47: Heatmap representing conversion of hydroxipimelyl-CoA to crotonyl-CoA.
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The presence and absence (black/white) of the KOs and color scale indicating the strength of transcrip-
tion. It shows the KOs involved in the left pathway in Figure A.41 B.
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Figure A.48: Heatmap on key KOs to identify fermentation of crotonyl-CoA to acetate.
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The presence and absence (black/white) of the KOs and color scale indicating the strength of transcrip-
tion. It shows the KOs involved in the upper fermentation pathway in Figure A.41 B.
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Figure A.49: Heatmap of key KOs to identify fermentation of crotonyl-CoA to butyrate.
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The presence and absence (black/white) of the KOs and color scale indicating the strength of transcrip-
tion. It shows the KOs involved in the lower fermentation pathway in Figure A.41 B.
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Figure A.50: Heatmap showing key KOs involved in respiration.
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The presence and absence (black/white) of the KOs and color scale indicating the strength of transcrip-
tion. It shows the KOs involved in the respiration pathway in Figure A.41 B.
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Figure A.51: Heatmap of selected KOs involved in the TCA cycle.
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The presence and absence (black/white) of the KOs and color scale indicating the strength of transcrip-
tion. It shows the KOs involved in the TCA pathway in Figure A.41 B.
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Figure A.52: Heatmap of KOs involved in denitrification.
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Figure A.53: Heatmap of KOs involved in dissimilatory nitrate reduction to ammonia (DNRA).
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Figure A.54: Heatmap of KOs involved in the glyoxylate shunt.
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Figure A.55: Graph of central metabolism of anaerobic benzene degradation of dominant MAG 1 (P:
Chloroflexi, F: Anaerolineaceae).
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Boxed enzymes are colored according to their expression levels. We hypothesize that this MAG is a
scavenger of metabolic leftovers of benzene degradation or it feeds on necromass.
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Figure A.56: Graph of central metabolism of anaerobic benzene degradation of dominant MAG 3 (P:
Planctomycetes, G: Candidatus Kuenenia).
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Boxed enzymes are colored according to their expression levels. We hypothesize that this MAG is the
main Anammox organism.
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Figure A.57: Graph of central metabolism of anaerobic benzene degradation of dominant MAG 5 (P:
Chloroflexi, F: Anaerolineaceae).
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Boxed enzymes are colored according to their expression levels. We hypothesize that this MAG is a
scavenger of metabolic leftovers of benzene degradation or it feeds on necromass.

223 APPENDIX A. APPENDIX



Figure A.58: Graph of central metabolism of anaerobic benzene degradation of dominant MAG 6 (P:
Proteobacteria, F: Rhodocyclaceae).
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Boxed enzymes are colored according to their expression levels. We hypothesize that this MAG is a
primary consumer of benzene.
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Figure A.59: Graph of central metabolism of anaerobic benzene degradation of dominant MAG 18 (P:
Bacteroidetes, F: Cryomorphaceae).
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Boxed enzymes are colored according to their expression levels. We hypothesize that this MAG is a
scavenger of metabolic leftovers of benzene degradation or it feeds on necromass.
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Figure A.60: Relation between acids, vitamins and benzene consumption with accompanying nitrite
levels
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Figure A.61: Relationship between nitrite and benzene concentrations in all cultures over time.
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Figure A.62: Relationship between culture stage and cell abundance of top significant OTUs.
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Results based on random forest variable importance and PERMANOVA analysis. For taxonomy see
Table A.17.
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Figure A.63: Heatmap of KOs involved in aerobic benzene degradation.
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Figure A.64: Multiple sequence alignment between predicted NODs.
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NODs from MAG 34, MAG 33/MAG 0 and 71 with M. oxyfera NOD1, NOD2, γ-protebacteria NOD,
δ-protebacteria NOD and qNOR were used (GenBank ids: CBE69502.1, CBE69496.1, TAJ95298.1,
MAG34007.1 and CBE68939.1 respectively). The analysis was performed with CLUSTAL 2.1 algo-
rithm which is used as default setting in msa R-package [533]. Note that the NOD genes from MAG 34
and MAG 33/MAG 0 are likely to be fragments of a complete version of the gene as the following amino
acid sequence is overlap between the two "DLMSYWFGSQGWEFIELGRFFQLLLLTSFVLWI" - in-
dicated with horizontal yellow rectangle. The conserved H and E in qNor enzymes and displacement
by N and Q respectively in NODs are marked with a red rectangle. [534].
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Appendix B

List of symbols and abbreviations

The following list gives a short description of the symbols used throughout this thesis, together with
their units when applicable.

Symbol Description and unit

DNA Deoxyribonucleic Acid
RNA Ribonucleic Acid
PCR Polymerase Chain Reaction
OTUs Operational Taxonomic Units
ESVs Exact Sequence Variants
HTS High-Throughput Sequencing
MLF Malolactic Fermentation
AF Alcoholic Fermentation
NGS Next-Generation Sequencing
ITS Internal Transcribed Spacer
UTI Urinary Tract Infection
KO KEGG Ortholog
MAGs Metagenome-Assembled Genomes
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